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1 Kingman’s model

The whole story starts from Kingman’s ([7, 1978]) paper on the balance between selection
and mutation. Kingman’s plan was to introduce a simple model that describes the com-
petition between selection and mutation, and that eventually the population converges to
the asymptotic stationary state. A condensation occurs if a non-negligible fraction of the
population travels to and condensates at the largest fitness value. Kingman’s model ex-
hibits the phase transition phenomenon of condensation, depending on the relative strength
of selection and mutation. Bianconi et al [2, 2009] argued that this is akin to the effect of
Bose-Einstein condensation, in which for a dilute gas of weakly interacting bosons at very
low temperatures a fraction of the bosons occupy the lowest possible quantum state.

More precisely, Kingman considered an infinite population with discrete generations, and
the fitness values of an individual are within [0,1]. The population is driven by selection
and mutation. The model has three parameters (P0,Q, b) and is defined as:

Pn+1(dx) = (1 − b)
xPn(dx)

∫
1
0 yPn(dy)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

selection

+ bQ(dx)
´¹¹¹¹¹¸¹¹¹¹¹¹¶
mutation

, n ≥ 0. (1.1)

• Q,Pn are probability measures on [0,1]. Q is the mutant distribution, and Pn is the
fitness distribution at the n-th generation for n ≥ 0.

• b ∈ (0,1) is deterministic, and is interpreted as the mutation probability for each
generation.

Let h ∶= sup{x ∶ Q([x,1]) + P0([x,1]) > 0}. So h is interpreted as the largest fitness value

of the population. Kingman showed that there exists a phase transition depending on

ζ(b) ∶= 1 − b ∫
Q(dy)
1−y/h .

Theorem 1. If ζ(b) ≤ 0, then (Pn)n≥0 converges strongly to

bθQ(dx)

θ − (1 − b)x
,
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with θ being the unique solution of ∫
bθQ(dx)
θ−(1−b)x = 1.

If ζ(b) > 0, then (Pn)n≥0 converges weakly to

bQ(dx)

1 − x/h
+ ζ(b)δh(dx),

here δh(dx) is the Dirac measure at h. Condensation occurs.

Below we list some generalisations of Kingman’s model.

Lenski experiment[9, 2017]: Fix λ > 0. Consider a population model as follows

Pn+1(dx) = (1 − b)
etnxPn(dx)

λ
+ bQ(dx), n ≥ 0,

where tn is a number such that

∫ etnxPn(dx) = λ.

Bürger’s model[3, 1988]: Let r(x, y) denote the conditional probability density for mu-
tation from type y to type x. Let pn(x) denote the density function of the n-th generation.
Then

pn+1(dx) = (1 − b)
w(x)pn(x)

∫ w(z)pn(z)dz
+ b∫ r(x, y)

w(y)pn(y)

∫ w(z)pn(z)dz
dy, n ≥ 0.

Continuous-time model[1, 2018]: LetM be a certain set of nonnegative finite measures
on R+. Let B ∶ M ↦ C(R+),C ∶ M ↦ C(R+). Fix α > 0 and define

∂tPt(dx) = B[Pt]Pt(dx) + x
αC[Pt]dx.

To see why it is a generalisation of Kingman’s model, note that (1.1) is equivalent to

Pn+1(dx) − Pn(dx) = (1 − b)(
x

∫ yPn(dy)
− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B[Pn]

Pn(dx) + bQ(dx)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
xαC[Pn]dx

2 Peter Mörters et al: condensation wave

If condensation occurs, how fast the mass travels to h, the largest fitness value? Dereich
and Mörters showed the following for Kingman’s model.

Theorem 2. WLOG assume that h = 1. Suppose that the mutant distribution Q satisfies

lim
u→0

Q(1 − u,1)

uα
= 1,

where α > 1. If Kingman’s model falls in the condensation regime (i.e. ζ(b) > 0), then for
any x > 0,

lim
n→∞

Pn (1 −
x

n
,1) =

ζ(b)

Γ(α)
∫

x

0
yα−1e−ydy.

The Gamma function appears! They made the conjecture that in similar models with a
pair of competing forces, when the condensation occurs, the traveling wave should be of the
shape of the Gamma function. They worked in a series of models, using various frameworks
such as branching processes [5, 2017], preferential attachment networks [4, 2016], zero-range
processes [8, 2016], and random permutations [6, 2015].
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3 How does extra randomness affect the condensation?

I was interested in the following model. We use the same P0 and Q from Kingman’s model
but replace b by a sequence of i.i.d. random variables βn ∈ [0,1], n ≥ 0 ∶

Pn+1(dx) = (1 − βn)
xPn(dx)

∫ yPn(dy)
+ βnQ(dx), n ≥ 0.

• Does (Pn)n≥0 converge?

• If so, what is the condensation criterion?

• Is it easier to have condensation in the random model or Kingman’s model?

• If we set E[β1] = b, is the limit fitter in the random model than in Kingman’s model
or the other way round?

These questions were answered in [10, 2020] and [11, 2022]. In particular, it was shown
that the extra randomness will hinder the condensation. Is it true in general? A conjecture
to explore in various models.

4 Connection to random matrices

4.1 Some facts

Let µ be a probability measure on [0,∞). Let fn = ∫
∞

0 xnµ(dx) for n ≥ 1. Define a renewal
sequence (un)n≥0 as follows

u0 = 1; un =
n

∑
r=1

frun−r, n ≥ 1.

Then there exists a probability measure ν on [0,∞) such that un = ∫
∞

0 xnν(dx),∀n. We
refer to kingman1978simple for a discussion.

Moreover, it is easy to verify that

un = det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1 f2 f3 ⋯ fn
−1 f1 f2 ⋯ fn−1
0 −1 f1 ⋯ ⋮

0 0 ⋱ ⋱ ⋮

0 0 ⋯ −1 f1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, n ≥ 1. (4.2)

To my best knowledge, this representation was only given in [11, 2020].

4.2 The random model

Consider a finite backward sequence (Pn
j )0≤j≤n of the random Kingman’s model:

Pn
n = P0; Pn

j = (1 − βj+1)
xPn

j+1(dx)

∫ yP
n
j+1(dy)

+ βj+1Q(dx), 0 ≤ j ≤ n − 1.
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Define γj =
1−βj

βj
,mj = E[(β1)j], ∀j. If Pn

n = Q, then

xPn
j (dx)

∫ yP
n
j (dy)

=

det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x x2 x3 ⋯ xn−j+1

−γj+1 m1 m2 ⋯ mn−j

0 −γj+2 m1 ⋯ ⋮

0 0 ⋱ ⋱ ⋮

0 0 ⋯ −γn m1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1 m2 m3 ⋯ mn−j+1

−γj+1 m1 m2 ⋯ mn−j

0 −γj+2 m1 ⋯ ⋮

0 0 ⋱ ⋱ ⋮

0 0 ⋯ −γn m1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Q(dx).

The question is: can we find asymptotic properties of these deterministic and random
matrices, such as the eigenvalues? An open problem that seems interesting.
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