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Nonsmooth optimization problems over
manifolds



Nonsmooth optimization problems over manifolds

NManOP:
min f(x) + θ(g(x))

s.t. x ∈M,

• X, Y, Z: the finite dimensional Euclidean spaces

• f : X→ R and g : X→ Y: smooth functions

• M⊆ X: a Riemannian manifold

• θ : Y→ (−∞,∞]: a closed convex function, e.g., ∥ · ∥1; ∥ · ∥(k); δRn
+
(·)...
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Nonsmooth optimization problems over manifolds (con’t)

NManOP:
min f(x) + θ(g(x))

s.t. x ∈M,

Consider the following "simple" nonsmooth problem:

• θ ≡ δRn×n
+

(·)

• M≡ {X ∈ Rn×n | XTX = In}, i.e., the set of all n× n orthogonal
matrices.

• f ≡ ⟨X,AXB + C⟩, where A, B and C are given n× n real symmetric
matrices.

The NManOP is exactly the quadratic assignment problem (QAP)

OPTQAP = min
{
⟨X,AXB + C⟩ | XTX = I, X ≥ 0

}
.

However, the nonsmooth term "θ" makes the problem very difficult to solve. In
fact, the Riemannian Robinson CQ does not hold at any feasible point.
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Other applications

Compressed modes (CM) problem:

min
X∈St(n,r)

trace(XTHX) + µ∥X∥1

Sparse principal component analysis (SPCA):

min
X∈St(n,r)

− trace(XTATAX) + µ∥X∥1

Constrained SPCA:

min
X∈St(n,r)

− trace(XTATAX) + µ∥X∥1

s.t. |XiA
TAXj | ≤ ∆ij ∀ i ̸= j

And many others: l1-PCA; orthogonal dictionary learning; robust subspace
recovery; ONMF; ...
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Matrix manifolds

Ambient space Rm×n:

• Embedded manifolds: (orthogonal/compact) Stiefel manifold; fixed rank
manifold;

• Quotient manifolds: Grassmann manifold
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Existing methods

• Subgradient methods: Ferreira and Oliveria, (1998); Dirr, et al., (2006);
Borckmans, et al., (2014); Grohs and Hosseini, (2016); Hosseini, (2017);
Hosseini, et al. (2018); ...

• ADMs/ADMMs on manifold: SOC: Lai and Osher, (2014); MADMM:
Kovnatsky, et al., (2016); EPALMAL: Zhu, et al. (2017); PAMAL: Chen,
et al., (2016)

• Proximal gradient method: ManPG: Chen, et al, (2020); AManPG:
Huang and Wei, (2019); ARPG: Huang and Wei, (2020)

• Penalty approach: PenCPG: Xiao, et al. (2020); SLPG: Xiao, et al.
(2021)
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Riemannian Augmented Lagrangian
method (RALM)



Augmented Lagrangian method1

Consider
min
x∈X

Φ(x)

s.t. h(x) = 0 ← y

ALM (Hestenes, 69’; Powell, 69’): xk+1 ≈ argmin
{
Lρ(x; y

k)
}

yk+1 = yk + ρh(xk+1)

1a.k.a. the method of multipliers
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Riemannian ALM (RALM) for NManOPs

By adding a perturbation parameter u, consider the perturbed NManOP:

min φ(x, u) := f(x) + θ(g(x) + u)

s.t. x ∈M

• Lagrangian function:

l(x, y) = inf
u
{φ(x, u)− ⟨y, u⟩} = L(x, y)− θ∗(y),

where L(x, y) = f(x) + ⟨y, g(x)⟩ and θ∗ is the conjugate function

• Augmented Lagrangian function:

lρ(x, y) = inf
u

{
φ(x, u)− ⟨y, u⟩+ ρ

2
∥u∥2

}
• The inexact RALM iteration: xk+1 ≈ argmin

x∈U
lρk

(
x, yk

)
,

yk+1 = yk + ρ̃k∇yl
ρk

(
xk+1, yk

)
,

where ρk, ρ̃k > 0 and U is a subset of M.

Zhou, Bao, D. and Zhu, MP (2023): a semismooth Newton based RALM.
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Convergence rate: a toy example

min x22 + |x1 − x2|
s.t. 2x1 + x2 ≥ 0

x21 + x22 = 1

The unique optimal solution is (x∗1, x
∗
2) = (

√
2/2,
√
2/2) with the

corresponding multipliers y∗ =
√
2/2 and z∗ = 0.

Figure 1: the residuals generated by exact ALM with different ρ
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The CM problem for the Schrödinger equation of 1D free-electron model

Consider the CM problem to solve the Schrödinger equation of 1D free-electron
model with periodic boundary condition

min
X∈St(n,r)

tr(XTHX) + µ∥X∥1

where H is the discretization of the Hamilton operator.

Figure 2: Zhou, Bao, D. and Zhu, MP (2023)
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Local convergence analysis of ALM: the Euclidean case

For the polyhedral case:

• NLP with equality constraints: cf. Powell, 69’

• Convex OPs: Rockafellar, 76’

• NLP (non-convex): Bertsekas, 82’; Conn, Gould and Toint, 91’;
Contesse-Becker 93’; Ito & Kunisch 91’; Fernández and Solodov, 12’;
Nocedal and Wright, 06’, ...

For non-polyhedral & non-convex:

• NLSDP (Sun, Sun and Zhang, MP 08’):
strong SOSC + LICQ =⇒ primal-dual linear

• C2-cone reducible conic problems (Kanzow and Steck, MP 18’):
SOSC + SRCQ =⇒ primal-dual linear

• Both under the uniqueness of the KKT solution.
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Rockafellar’s recent work: (strong) variational sufficiency

Rockafellar MP 22’ shows that under so-called strong variational sufficiency,
ALM has the Q-linear convergence of multiplier and R-linear of the primal
variable even for non-convex problems.
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Convexity and monotonicity

A proper, lsc function

f is convex ⇐⇒ ∂f is (maximal) monotone

• Duality theorem

• PPA & ALM

local convexity of f on X =⇒
̸⇐= local monotonicity of ∂f on X × Rn
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Beyond convexity : variational convexity

Definition (f -local monotonicity of subgradient, Rockafellar VJM 19’)
For lsc f : Rn → (−∞,+∞] the mapping ∂f : Rn→

→Rn is f -locally monotone
around (x̄, v̄) if there is a neighborhood X × V of (x̄, v̄) such that

[Xε × V] ∩ gph ∂f is monotone in X × V

where Xε := {x ∈ X | f(x) < f(x̄) + ε} for some ε > 0.

Definition (Variational convexity, Rockafellar VJM 19’)
Let f : X→ (−∞,∞] be a lsc function. f is (strongly) variational convex
with respect to (x̄, v̄) ∈ gph ∂f if there exists an open convex neighborhood
X of x̄ and V of v̄ such that there exists a proper lsc (strongly) convex
function h ≤ f on X and a number ε > 0 such that

[Xε × V] ∩ gph ∂f = [X × V] ∩ gph ∂h,

and, for any (x, v) belonging to this common set, also h(x) = f(x).

variational convexity of f ⇐⇒ f -local monotonicity of ∂f
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(Strong) variational sufficiency

Consider the general composite optimization problem:

min
x∈X

f(x) + θ(G(x))

• f : X→ R, G : X→ Y are twice continuously differentiable

• θ : Y→ (−∞,∞] is a closed proper convex function

Define

• ϕ(x, u) = f(x) + θ(G(x) + u) be the perturbed objective function with
the parameter u

• For ρ > 0, the augmented objective function ϕρ(x, u) := ϕ(x, u) + ρ
2
∥u∥2

Definition
The (strong) variational sufficient condition for local optimality holds with
respect to x̄ and Y satisfying the first order condition if there exists ρ̄ > 0

such that augmented objective function ϕρ̄(x, u) is (strong) variational
convex with respect to the pair

(
(x̄, 0), (0, Y )

)
in gph ∂ϕρ̄.
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(Strong) variational sufficiency and weak convexity

Recall the general composite optimization problem:

min
x∈X

ψ(x) := f(x) + θ(G(x))

When G(x) = Ax+ b, we are able to show locally

(strong) variational sufficiency =⇒ ψ is weakly convex

i.e., there exists m > 0 such that ψ(x) + m
2
∥x∥2 is convex.

However,

(strong) variational sufficiency ̸⇐= ψ is weakly convex

Consider the following problem:

min
x∈R

|x| − x2

s.t. −0.5 ≤ x ≤ 0.5,

since the corresponding augmented Lagrangian function is not convex.
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(Strong) variational sufficiency: for non-polyhedral case

For NLSDP,
min f(x) + δSn+(G(x))

Recently, Wang, D., Zhang and Zhao, SIOPT 23’ shows that

Theorem

Let x̄ ∈ X be a stationary point to the NLSDP and Y be a corresponding
multiple. The following conditions are equivalent.

(i) The strong variational sufficient condition with respect to (x̄, Y ) holds.

(ii) The strongly second order sufficient condition holds at (x̄, Y ).

Under the Euclidean setting, the local convergence rate of ALM even for
non-convex and non-polyhedral problems, e.g., NLSDP and NLSOC:

optimality CQs
Sun, Sun and Zhang MP 07’ Strong SOSC LICQ
Kanzow and Steck MP 19’ SOSC SRCQ
Wang and D. COAP 23’ SOSC partially free+

Wang, D., Zhang and Zhao SIOPT 23’ Strong SOSC free+
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Strong variational sufficiency for
NManOPs



Geodesic convexity?

Geodesically convex:

for each geodesic γ : R→M, f ◦ γ : R→ R is convex function: i.e., for any
λ ∈ [0, 1] and a, b ∈ R,

f ◦ γ((1− λ)a+ λb) ≤ (1− λ)f ◦ γ(a) + λf ◦ γ(b).

• f :M→ R is geodesically convex over a compact manifold, then f is

constant

• f(x) = ∥x∥1 is locally geodesically concave around the north pole

N = (0, · · · , 0, 1) of n-sphere Sn := {x ∈ Rn+1 : ∥x∥2 = 1}

17
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• f :M→ R is geodesically convex over a compact manifold, then f is

constant

• f(x) = ∥x∥1 is locally geodesically concave around the north pole

N = (0, · · · , 0, 1) of n-sphere Sn := {x ∈ Rn+1 : ∥x∥2 = 1}
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Retraction

Retraction: a smooth mapping R from the tangent bundle TM onto M
satisfying Rx (0x) = x and DRx (0x) = idTxM.

18



The localization of NManOPs

• At a given point x, by the inverse function theorem, we know that any
retraction Rx : TxM→M is a diffeomorphism within a neighborhood of
0x in the tangent space TxM for a general Riemannian manifold.

• For a given function F :M→ R, we define FRx : TxM→ R by

FRx(ξ) =

{
F (Rxξ) , ξ ∈ Bx(rRx),

+∞, ξ /∈ Bx(rRx),

where rRx is called the injectivity radius of a Riemannian manifold M at
a point x with respect to retraction Rx.

Thus, NManOPs can be locally transformed into the following equivalent
problem on the tangent space TxM, i.e.,

min fRx(ξ) + θ(gRx(ξ))

s.t. ξ ∈ TxM.
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The localization of NManOPs (con’t)

The perturbed problem for the localized NManOP:

min φRx(ξ, u) := fRx(ξ) + θ(gRx(ξ) + u)

s.t. ξ ∈ TxM,

The Lagrangian function:

lRx(ξ, y) = inf
u
{φRx(ξ, u)− ⟨y, u⟩} = LRx(ξ, y)− θ

∗(y)

The augmented Lagrangian function:

lρRx
(ξ, y) = inf

u

{
φRx(ξ, u)− ⟨y, u⟩+

ρ

2
∥u∥2

}
.

Moreover, the (augmented) objective functions satisfy

φ(x, u) = sup
y
{l(x, y) + ⟨y, u⟩}, φρ(x, u) = sup

y
{lρ(x, y) + ⟨y, u⟩}

φRx(ξ, u) = sup
y
{lRx(ξ, y) + ⟨y, u⟩}, φρ

Rx
(ξ, u) = sup

y
{lρRx

(ξ, y) + ⟨y, u⟩}.
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The localization of NManOPs (con’t)

Proposition
The following statements are equivalent:

(i) (x̄, ȳ) satisfies the first-order optimality condition of the NManOP
(0, ȳ) ∈ ∂φ(x̄, 0);

(ii) (0x̄, ȳ) satisfies the first-order optimality condition of localized NManOP;

(iii) For any ρ > 0, (x̄, ȳ) satisfies (0, ȳ) ∈ ∂φρ(x̄, 0);

(iv) For any ρ > 0, (0x̄, ȳ) satisfies (0x̄, ȳ) ∈ ∂φρ
Rx̄

(0x̄, 0);

(v) gradx l(x̄, ȳ) = 0, 0 ∈ ∂y[−l](x̄, ȳ), or gradx L(x̄, ȳ) = 0, ȳ ∈ ∂θ(g(x̄));

(vi) ∇ξlRx̄(0x̄, ȳ) = 0, 0 ∈ ∂y[−lRx̄ ](0x̄, ȳ), or ∇ξLRx̄(0x̄, ȳ) = 0,
ȳ ∈ ∂θ(gRx̄(0x̄)) ;

(vii) gradx l
ρ(x̄, ȳ) = 0, 0 ∈ ∇yl

ρ(x̄, ȳ), or gradx L(x̄, ȳ) = 0,
∇ envρ θ(g(x̄) + ρ−1ȳ) = ȳ, where envρ θ is the Moreau-Yosida
regularization of θ defined by envρ θ(p) := miny∈Y θ(y) +

ρ

2
∥p− y∥2;

(viii) ∇ξl
ρ
Rx̄

(0x̄, ȳ) = 0, 0 ∈ ∇yl
ρ
Rx̄

(0x̄, ȳ), or ∇ξLRx̄(0x̄, ȳ) = 0,
∇ envρ θ(gRx̄(0x̄) + ρ−1ȳ) = ȳ.
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(Strong) variational sufficiency for Riemannian optimization

Recall the NManOP and localized NManOP:

min f(x) + θ(g(x))

s.t. x ∈M,
and

min fRx(ξ) + θ(gRx(ξ))

s.t. ξ ∈ TxM.

For any x̄ and ȳ satisfying the first-order condition of NManOP and any given
retraction Rx̄, we define the (strong) variational sufficiency for NManOP by

Manifold (strong) variational sufficiency under Rx̄

⇐⇒ (strong) variational sufficiency for the localized NManOP

For NManOP, we are able to study

• Local augmented duality

• PPA & RALM
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The local duality for manifold optimizations

For a given ρ̄ > 0, the local augmented primal problem for (NManOP):

min
x∈Rx̄(W)

sup
y∈Y

lρ̄(x, y) for x ∈ Rx̄(W), (P )

the local augmented dual problem for (NManOP):

max
y∈Y

inf
x∈Rx̄(W)

lρ̄(x, y) for y ∈ Y. (D)

Theorem

Suppose that (x̄, ȳ) is a first-order stationary point of NManOP and the manifold
variational sufficiency condition holds at (x̄, ȳ). Then, the problems (P) and (D)
defined in the neighborhood Rx̄(W)× Y of (x̄, ȳ) have optimal solutions with
min(P ) = max(D), and

x∗ solves (P ) ⇐⇒ x∗ minimizes in (NManOP) relative to Rx̄(W).

Moreover the following conditions are equivalent:

(a) x∗ minimizes in (P) and y∗ maximizes in (D),

(b) (x∗, y∗) is a saddle point of lρ̄ on Rx̄(W)× Y,

(c) (x∗, y∗) is a saddle point of lρ on Rx̄(W)× Y for any ρ ≥ ρ̄.
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Characterization of strong variational sufficiency for NManOPs (I)

Theorem

Let x̄ and ȳ satisfy the first-order optimality condition. Suppose that θ is a
polyhedral convex function or the indicator function of second-order cone or
SDP cone. Then, the following two conditions are equivalent.

• the manifold strong variational sufficient condition with respect to (x̄, ȳ)

under retraction Rx̄ holds at (x̄, ȳ);

• the manifold strong second-order sufficient condition (M-SSOSC) holds
at (x̄, ȳ), i.e., for any Dg(x̄)ξ ∈ aff Cθ,g (x̄, ȳ) \{0},

⟨ξ,Hessx L (x̄; ȳ) ξ⟩ − σ
(
ȳ, T 2

K (g (x̄) , Dg (x̄) ξ)
)
> 0.

• M-SSOSC is independent of the choice of the retraction Rx̄

• Actually, the manifold strong variational sufficient condition is
independent of the retraction Rx̄;

• It is possible to define the retractionally (strongly) convex function. Also,
the strong retractional convexity is independent of the choice of the
retraction Rx̄ at least near the critical point x̄.
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under retraction Rx̄ holds at (x̄, ȳ);
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Local convergence rate of RALM and its
subproblem



Local convergence rate of RALM

Recall the inexact RALM iteration takes the form of xk+1 ≈ argmin
x∈U

lρk
(
x, yk

)
,

yk+1 = yk + ρ̃k∇yl
ρk

(
xk+1, yk

)
,

where ρk, ρ̃k > 0

Follow one of the following rules:

(
2ρ̃k

[
lρk

(
xk+1, yk

)
− inf

x∈Rx̄(W)
lρk

(
x, yk

)])1/2 ≤


(a) εk

(b) εk min
{
1,

∥∥ρ̃k∇ylρk
(
xk+1, yk

)∥∥}
(c) εk min

{
1,

∥∥ρ̃k∇ylρk
(
xk+1, yk

)∥∥2}
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Local convergence rate of RALM (con’t)

Theorem
Suppose that the M-SSOSC for NManOP holds at a local optimal solution x̄.
Let {(xk, yk)} be the sequence generated by ALM. Then, under some
suitable conditions, dist

(
yk,M(x̄)

)
→ 0 Q-linearly at a rate 0 < τ < 1, i.e.,

dist
(
yk+1,M(x̄)

)
≤ 1√

1 + b2(ρ∞)2
dist

(
yk,M(x̄)

)
,

where M(x̄) is the Lagrange multiple set of x̄. Moreover, xk → x̄ R-linearly
at that rate as long as the stopping criterion in approximate minimization is
supplemented by the proviso that∥∥∥gradx l

ρk
(
xk+1, yk

)∥∥∥ ≤ c ∥∥∥yk+1 − yk
∥∥∥ for some fixed c.
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Semismooth Newton method for the subproblem

Recall the RALM subproblem:

xk+1 ≈ argmin
x∈U

lρk
(
x, yk

)
Consider the embedded submanifold:

• M⊂M≡ Rm×n

• Φ(x) := grad lρk
(
x, yk

)

Vector fields: the Riemannian gradient gradf(x) :M→ TM is given by

gradf(x) = Πx(∇f(x))

• Πx is the projection onto TxM.

Usually, we have ∇f(x) is (globally) Lipschitz continuous and even
(strongly) semismooth in the ambient space M̄

We typically interest in solving the following nonsmooth equation:

Φ(x) := gradf(x) = 0
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Nonsmooth analysis over vector fields

A natural and fundamental problem:

When the vector field Φ(x) is semismooth?

Zhou, Bao, D. and Zhu, MP (2023):

Φ̄ ≡ ∇f in M≡ Rm×n:
• Lipschitz continuous
• (strongly) semismooth

=⇒
Φ in M⊂M:
• Lipschitz continuous
• (strongly) semismooth
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Local convergence of semismooth Newton method

• To solve Φ = grad f(p) = 0.

Choose Hk ∈ K(pk), use CG to find Vk ∈ TpkM, such that

∥(Hk + ωkI)Vk +Φ(pk)∥ ≤ η̃k

where ωk = ∥Φ(pk)∥ν and η̃k is a sequence converges to 0.

Theorem
Let K = ∂Φ. Denote p∗ be any accumulation point of {pk}. If Φ is
semismooth at p∗ with order ν with respect to K, and all elements of K (p∗)

are positive definite, then we have pk → p∗ as k →∞ and for sufficiently
large k, it holds

d (pk+1, p∗) ≤ O
(
d (pk, p∗)

1+min{ν,ν̄}
)
.
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Characterization of strong variational sufficiency for NManOPs (II)

Theorem

Let x̄ and ȳ satisfy the first-order optimality condition. Suppose that θ is a
polyhedral convex function or the indicator function of second-order cone or
positive semidefinite cone. Then, the following conditions are equivalent.

• the manifold strong variational sufficient condition with respect to (x̄, ȳ);

• the manifold strong second-order sufficient condition (M-SSOSC) holds at
(x̄, ȳ);

• any H ∈ K (x̄) is positive definite.
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Numerical experiments



Convergence rate: robust matrix completion

For a given A ∈ Rm×n, M = Fr(m,n, r) := {X ∈ Rm×n : rank(X) = r},
consider

minX∈Rm×n ∥PΩ(X −A)∥ℓ1
s.t. X ∈ Fr(m,n, r),

Consider a basic example: Ω is the full index set. Let

U =

1 0 0 0 0

0 −
√

2
2

√
2

2
0 0

0
√

2
2

√
2

2
0 0


T

, V =

1 0 0 0 0

0 0.6 −0.8 0 0

0 0.8 0.6 0 0


T

and

S =

1 0 0

0 2 0

0 0 3

. The observed matrix is set to A = Aex + Eout, where

Aex = USV T is the assumed ground truth and Eout is a matrix with random
entries added only in the lower right 2× 2 submatrix. Since Aex is of rank
r = 3, X∗ = Aex is a solution of this problem and y∗ij = sgn(Eij

out) is a
corresponding multiplier.

It can be checked directly that the M-SSOSC holds at (X∗, y∗)!
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Convergence rate: robust matrix completion (con’t)

Riemannian ALM:

Figure 3: the KKT residues generated by inexact ALM
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Convergence rate: robust matrix completion (con’t)

(a) m=n=500, r=10 (b) m=n=1000, r=10 (c) m=n=2000, r=20

Figure 4: The KKT residues of robust matrix completion problems generated by
inexact ALM
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The robust matrix completion

The performance of Riemannian augmented Lagrangian method for the robust
matrix completion problem.

m n r it time(sec) KKT residual ∥X −Aex∥

500 500 10 15 5.24 4.8339e-08 1.6186e-08

1000 1000 10 17 14.87 3.5088e-08 8.3608e-08

2000 2000 20 17 33.47 2.5007e-08 2.4877e-08

5000 5000 20 30 430.02 6.6165e-09 3.4093e-09
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The CM problem revisited

Ozolin, š, Lai, Caflisch, and Osher PNAS, 2013: The Schrödinger equation of
1D free-electron model with periodic boundary condition:

− 1

2
∆ϕ(x) = λϕ(x), x ∈ [0, 2]

Recall the compressed mode (CM) problem:

min
X∈St(n,r)

tr(XTHX) + µ∥X∥1,

where H is a discretization of the Hamilton operator

Figure 5: Zhou, Bao, D. and Zhu, MP (2023)
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The CM problem revisited (cont’)

The minimum eigenvalue of the (generalized) Hessian matrix of Φ(x) in the
CM problem. (n, r, µ) = (1000, 20, 0.1) and one of them varies. We report the
results of 5 different runs.
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The CM problem revisited (cont’)

Consider the Schrödinger equation of with boundary condition when x ∈ [0, 2].
Discretize the domain [0, 2] into n = 4 nodes. Let H be a discretization of the
Hamilton operator, i.e.,

H = −


−4 2 0 2

2 −4 2 0

0 2 −4 2

2 0 2 −4



For r = 2, X∗ =

[
0 0

√
2/2

√
2/2√

2/2
√
2/2 0 0

]⊤

is a local optimal of the

CM problem if µ < 5
√
2 and y = µ

[
0 0 1 1

1 1 0 0

]⊤

is a corresponding

multiplier.

It can be checked directly that the M-SSOSC holds at (X∗, y∗)!
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Summary

In this talk:

• The RALM for NManOP

• Characterization of Manifold strong variational sufficiency

• Fast linear local convergence rate of RALM without CQs

• Semismoothness on manifolds
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Thank you.
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