Competition and condensation in some population models

Linglong Yuan University of Liverpool

Summer School 2022: Stochastic population models

2022.08.24, AMSS

・ロト < 母 ト < 臣 ト < 臣 ト 三 の < で 1/44</p>

Outline

- Kingman's model
- Analogy to the Bose-Einstein condensation
- Mapping Bose-Einstein condensation with preferential attachment model with fitness
- A unifying approach: branching process with reinforcement
- Random permutation model

Kingman's model

Population characteristics

Consider a population that has

- infinite size
- discrete generations
- haploidy (one gender)
- selection and mutation

What would a suitable population model look like?

Main ideas

Fitness and fitness distribution

- an individual is represented by its fitness value¹ $x \in [0, 1]$
- the population at the *n*-th generation is represented by the fitness distribution P_n on [0,1]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

¹can be considered as the reproduction ability

Main ideas

Fitness and fitness distribution

- ▶ an individual is represented by its fitness value¹ $x \in [0, 1]$
- ▶ the population at the *n*-th generation is represented by the fitness distribution P_n on [0,1]

Mutation

- ▶ an individual is born as mutant with probability $b \in (0, 1)$
- the fitness value of a mutant is drawn independently from the same mutant distribution Q on [0,1]

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへの

¹can be considered as the reproduction ability

Main ideas

Fitness and fitness distribution

- an individual is represented by its fitness value¹ $x \in [0, 1]$
- ▶ the population at the *n*-th generation is represented by the fitness distribution P_n on [0,1]

Mutation

- ▶ an individual is born as mutant with probability $b \in (0, 1)$
- the fitness value of a mutant is drawn independently from the same mutant distribution Q on [0,1]

Selection

 individuals with larger fitness values will produce more offspring in the next generation

¹can be considered as the reproduction ability

Kingman's model (1978)

The model has three parameters (P_0, Q, b) and is defined as:

$$P_{n+1}(dx) = (1-b)\underbrace{\frac{xP_n(dx)}{\int_0^1 yP_n(dy)}}_{\text{selection}} + b\underbrace{Q(dx)}_{\text{mutation}}, \quad n \ge 0,$$

where

- Q is the mutant distribution
- P_n is the fitness distribution at the *n*-th generation for $n \ge 0$
- $b \in (0,1)$ is the deterministic mutation probability

Kingman's model (1978)

The model has three parameters (P_0, Q, b) and is defined as:

$$P_{n+1}(dx) = (1-b)\underbrace{\frac{xP_n(dx)}{\int_0^1 yP_n(dy)}}_{\text{selection}} + b\underbrace{Q(dx)}_{\text{mutation}}, \quad n \ge 0,$$

where

- Q is the mutant distribution
- P_n is the fitness distribution at the *n*-th generation for $n \ge 0$
- $b \in (0,1)$ is the deterministic mutation probability

Question

Will P_n converge? What does the limit look like?

Let $h := \sup \{x : Q([x,1]) + P_0([x,1]) > 0\}$. So h is interpreted as "the largest fitness value of the population."

Define $\zeta(b) \coloneqq 1 - b \int \frac{Q(dy)}{1 - y/h}$.

Let $h := \sup \{x : Q([x,1]) + P_0([x,1]) > 0\}$. So h is interpreted as "the largest fitness value of the population."

Define
$$\zeta(b) \coloneqq 1 - b \int \frac{Q(dy)}{1 - y/h}$$
.

Lemma

 $\zeta(b) \leq 0$ if and only if there exists a unique solution θ of the equation

$$\int \frac{b\theta Q(dx)}{\theta - (1 - b)x} = 1, \quad \theta \ge (1 - b)h$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

7/44

Theorem (Kingman, 1978) Democracy regime. If $\zeta(b) \leq 0$, then $(P_n)_{n \geq 0}$ converges strongly to

 $\frac{b\theta Q(dx)}{\theta - (1-b)x},$

with θ being the unique solution of $\int \frac{b\theta Q(dx)}{\theta - (1-b)x} = 1$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < 0 < 0 </p>

Theorem (Kingman, 1978) Democracy regime. If $\zeta(b) \leq 0$, then $(P_n)_{n \geq 0}$ converges strongly to

 $\frac{b\theta Q(dx)}{\theta - (1-b)x},$

with θ being the unique solution of $\int \frac{b\theta Q(dx)}{\theta - (1-b)x} = 1$.

Meritocracy/ Aristocracy regime. If $\zeta(b) > 0$, then $(P_n)_{n \ge 0}$ converges weakly to

$$\frac{bQ(dx)}{1-x/h}+\zeta(b)\delta_h(dx),$$

here $\delta_h(dx)$ is the Dirac measure at h. Condensation occurs.

Interplay of selection and mutation

Democracy regime (no condensation): $b \int \frac{Q(dy)}{1-y/h} \ge 1$

- high mutation probability
- fit mutation distribution

That is, mutation dominates selection.

Meritocracy/Aristocracy regime (condensation): $b \int \frac{Q(dy)}{1-v/h} < 1$

- Iow mutation probability
- less fit mutation distribution

That is, selection dominates mutation.

A main gradient in the proof

Let
$$w_n = \int x P_n(dx)$$
, $\mu_n = \int x^n Q(dx)$, $m_n = \int x^n P_0(dx)$. Let
 $W_n = w_0 w_1 \cdots w_{n-1}$

A main gradient in the proof

Let
$$w_n = \int x P_n(dx)$$
, $\mu_n = \int x^n Q(dx)$, $m_n = \int x^n P_0(dx)$. Let
 $W_n = w_0 w_1 \cdots w_{n-1}$

Then (W_n) satisfies

$$W_n = \sum_{i=1}^{n-1} W_{n-i} \times (1-b)^i b \mu_i + (1-b)^n m_n$$

Condensation wave

Theorem (Dereich and Mörters 2013) Assume $m_n/\mu_n \rightarrow 0$ and there exists $\alpha > 1$ such that

 $Q(1-t,1)\sim t^{\alpha},\quad t\to 0.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

11/44

Condensation wave

Theorem (Dereich and Mörters 2013) Assume $m_n/\mu_n \rightarrow 0$ and there exists $\alpha > 1$ such that

$$Q(1-t,1)\sim t^{\alpha},\quad t\to 0.$$

If $\zeta(b) > 0$ (condensation), then

$$\lim_{n\uparrow\infty} P_n(1-x/n,1) = \frac{\zeta(b)}{\Gamma(\alpha)} \int_0^x y^{\alpha-1} e^{-y} dy, \quad \text{ for any } x > 0.$$

Condensation wave

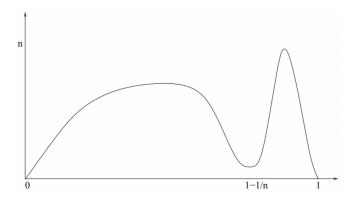


Figure: Dereich and Mörters 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conjectures

1. Dereich and Mörters proposed a conjecture that the Gamma-shape condensation wave is universal in Kingman-like models.

Conjectures

1. Dereich and Mörters proposed a conjecture that the Gamma-shape condensation wave is universal in Kingman-like models.

- 2. In Kingman's model, if we replace b by a sequence of i.i.d. mutation probabilities (β_n) for all generations with $\mathbb{E}[\beta_n] = b$,
 - how will that affect the condensation compared to the original model?

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

13/44

will the same effects apply to Kingman-like models?

 Lenski experiment (Y, 2017). Fix λ > 0. Consider a population model as follows

$$P_{n+1}(dx) = (1-b)\frac{e^{t_n x}P_n(dx)}{\lambda} + bQ(dx), \quad n \ge 0,$$

where t_n is a number such that

$$\int e^{t_n x} P_n(dx) = \lambda.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

14/44

Continuous-time model (Betz, Dereich and Mörters, 2017).

Let *M* be a certain set of nonnegative finite measures on \mathbb{R}_+ . Let $B: M \mapsto C(\mathbb{R}_+), C: M \mapsto C(\mathbb{R}_+)$. Fix $\alpha > 0$ and define

 $\partial_t P_t(dx) = B[P_t]P_t(dx) + x^{\alpha}C[P_t]dx.$

Continuous-time model (Betz, Dereich and Mörters, 2017).

Let *M* be a certain set of nonnegative finite measures on \mathbb{R}_+ . Let $B: M \mapsto C(\mathbb{R}_+), C: M \mapsto C(\mathbb{R}_+)$. Fix $\alpha > 0$ and define

$$\partial_t P_t(dx) = B[P_t]P_t(dx) + x^{\alpha}C[P_t]dx.$$

It is a generalisation of continuous-time Kingman's model, note that (6) is equivalent to

$$P_{n+1}(dx) - P_n(dx) = \underbrace{(1-b)\left(\frac{x}{\int y P_n(dy)} - 1\right)}_{B[P_n]} P_n(dx) + \underbrace{bQ(dx)}_{x^{\alpha}C[P_n]dx}$$

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < つ < ○ </p>

Unbounded fitness (Park and Krug, 2008)

Consider the model

$$f_{n+1}(x) = (1-b)\frac{xf_n(x)}{\int yf_n(y)dy} + bg(x)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

16/44

where

- $g(x) = e^{-x} \mathbf{1}_{x \ge 0}$ is the density of Q
- $f_n(x)$ is the density of P_n

Unbounded fitness (Park and Krug, 2008)

Consider the model

$$f_{n+1}(x) = (1-b)\frac{xf_n(x)}{\int yf_n(y)dy} + bg(x)$$

where

- $g(x) = e^{-x} \mathbf{1}_{x \ge 0}$ is the density of Q
- $f_n(x)$ is the density of P_n

Roughly, it holds that

$$f_n(x) \approx b e^{-x} + (1-b)\phi_{n,n}(x)$$

where $\phi_{n,n}$ is the density of N(n, n).

<ロト < 部 > < 注 > < 注 > 注 の < で 16/44

Unbounded fitness (Park and Krug, 2008)

Consider the model

$$f_{n+1}(x) = (1-b)\frac{xf_n(x)}{\int yf_n(y)dy} + bg(x)$$

where

- $g(x) = e^{-x} \mathbf{1}_{x \ge 0}$ is the density of Q
- $f_n(x)$ is the density of P_n

Roughly, it holds that

$$f_n(x) \approx b e^{-x} + (1-b)\phi_{n,n}(x)$$

where $\phi_{n,n}$ is the density of N(n, n).

Conjecture: is the Gaussian travelling wave universal?

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Kingman's model
- Analogy to the Bose-Einstein condensation

17/44

Boson gas⁴

- consider indistinguishable particles of an ideal² Boson gas in a closed box with rigid walls and fixed volume V
- at the energy level ε_i, there are g(ε_i) distinguishable states corresponding to ε_i

²meaning no particle interaction

 $^{^{3}\}mbox{we}$ refer to Janson 2012 for a survey on balls-in-boxes model, simply generated trees and related condensation phenomenon

Boson gas⁴

- consider indistinguishable particles of an ideal² Boson gas in a closed box with rigid walls and fixed volume V
- at the energy level ε_i, there are g(ε_i) distinguishable states corresponding to ε_i
- ▶ assume there are n(ɛ_i) particles at the energy level ɛ_i, the number of configurations³ is

$$\binom{n(\varepsilon_i) + g(\varepsilon_i) - 1}{n(\varepsilon_i)}$$

²meaning no particle interaction

 $^{3}\mbox{we}$ refer to Janson 2012 for a survey on balls-in-boxes model, simply generated trees and related condensation phenomenon

⁴thanks to my physicist friend Dr. Lingxuan Shao (SPEIT) for discussions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Boson gas

to achieve maximum entropy, we maximise

$$\prod_{i} \binom{n_i + g(\varepsilon_i) - 1}{n_i}$$

subject to

$$\sum_{i} n_{i} = N, \quad \sum_{i} \varepsilon_{i} n_{i} = U$$

with N the total number of particles and U the total energy

Boson gas

to achieve maximum entropy, we maximise

$$\prod_{i} \binom{n_i + g(\varepsilon_i) - 1}{n_i}$$

subject to

$$\sum_{i} n_{i} = N, \quad \sum_{i} \varepsilon_{i} n_{i} = U$$

with N the total number of particles and U the total energy • we obtain

$$n(\varepsilon) = rac{g(\varepsilon)}{e^{(\varepsilon-\mu)/kT}-1}$$

with T the temperature, $\mu \leq 0$ the chemical potential and k the Boltzmann constant

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < つ < ○ 19/44</p>

Approximation by the continuum setting

For energy levels within $(\varepsilon, \varepsilon + d\varepsilon)$, there are $g(\varepsilon)d\varepsilon$ states, where:

$$g(\varepsilon) = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} \sqrt{\varepsilon}$$

・ロ ・ ・ 一戸 ・ ・ 主 ・ 主 ・ う へ で 20/44

Approximation by the continuum setting

For energy levels within $(\varepsilon, \varepsilon + d\varepsilon)$, there are $g(\varepsilon)d\varepsilon$ states, where:

$$g(\varepsilon) = \frac{V}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} \sqrt{\varepsilon}$$

Then

$$\sum_{i} n(\varepsilon_{i}) = \int \frac{g(\varepsilon)}{e^{(\varepsilon-\mu)/kT} - 1} d\varepsilon = N$$

・ロ ・ ・ 一戸 ・ ・ 注 ・ 注 ・ う へ で 20/44

Bose-Einstein condensation

Let $\hat{\zeta} = 1 - \int \frac{g(\varepsilon)}{e^{\varepsilon/kT} - 1} d\varepsilon$.

Bose-Einstein condensation

Let
$$\hat{\zeta} = 1 - \int \frac{g(\varepsilon)}{e^{\varepsilon/kT} - 1} d\varepsilon$$
. Then
• if $\hat{\zeta} \le 0$ (i.e., $T > T_c$), the particle distribution is

$$n(\varepsilon)d\varepsilon = \frac{g(\varepsilon)}{e^{(\varepsilon-\mu)/kT}-1}d\varepsilon,$$

where μ is the unique solution of $\int \frac{g(\varepsilon)}{e^{(\varepsilon-\mu)/kT}-1} d\varepsilon = N$ • if $\hat{\zeta} > 0$ (i.e., $T < T_c$), the particle distribution is

$$\frac{g(\varepsilon)}{e^{\varepsilon/kT}-1}d\varepsilon + \hat{\zeta}\delta_0(d\varepsilon)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Kingman's model
- Analogy to the Bose-Einstein condensation
- Mapping Bose-Einstein condensation with preferential attachment model with fitness

22/44

Preferential attachment model with fitness

Bianconi and Barabási (2000) introduced the preferential attachment model with fitness

discrete: the network grows in discrete times

Preferential attachment model with fitness

Bianconi and Barabási (2000) introduced the preferential attachment model with fitness

- discrete: the network grows in discrete times
- addition: at each time step we add a new node.
 - a fitness value η_n is assigned to the *n*-th node, sampled independently from a common distribution on (0,1)

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

23/44

Preferential attachment model with fitness

Bianconi and Barabási (2000) introduced the preferential attachment model with fitness

- discrete: the network grows in discrete times
- addition: at each time step we add a new node.
 - a fitness value η_n is assigned to the *n*-th node, sampled independently from a common distribution on (0,1)
- connection: the *n*-th node is connected to the *j*-th node with probability

$$\frac{k_j\eta_j}{\sum_{i=1}^{n-1}k_i\eta_i}$$

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

23/44

where k_i is the degree (number of links) of the *i*-th node

Mapping

Define $\varepsilon_n = -T \log \eta_n$, which is mapped to an energy level in a Boson gas

- adding the *n*-th node into the network corresponds to
 - adding a new energy level ε_{n+1} and
 - 2 non-interacting particles to the system

Mapping

Define $\varepsilon_n = -T \log \eta_n$, which is mapped to an energy level in a Boson gas

- adding the n-th node into the network corresponds to
 - adding a new energy level ε_{n+1} and
 - 2 non-interacting particles to the system
- for the 2 particles added to the system
 - one particle sits at the level ε_n , and
 - the other one at level ε_j with probability

$$\frac{k_j\eta_j}{\sum_{i=1}^{n-1}k_i\eta_i}$$

◆□ ▶ < @ ▶ < \alpha > \alpha > \alpha < \alpha < \alpha < \alpha > \alpha < \alpha > \alpha < \alph

Bose-Einstein condensation

Let $g(\varepsilon)$ be the density of the distribution from which ε_n is drawn.

Let
$$\overline{\zeta} = 1 - \int \frac{g(\varepsilon)}{e^{\varepsilon/T} - 1} d\varepsilon$$
. Then in the limit $n \to \infty$
Fit-get-rich regime.
If $\overline{\zeta} \le 0$ (i.e., $T > T_c$), the particle (link) distribution is

$$rac{g(arepsilon)}{e^{(arepsilon-\mu^*)/T}-1}darepsilon_{arepsilon}$$

・ロト ・日 ・ ・ エ ・ ・ 日 ・ うへで

25/44

where μ^* is the unique solution of $\int \frac{g(\varepsilon)}{e^{(\varepsilon-\mu^*)/T}-1} d\varepsilon = 1$

Winner-takes-all regime.

If $\bar{\zeta} > 0$ (i.e., $T < T_c$), the particle distribution is

$$\frac{g(\varepsilon)}{e^{\varepsilon/T}-1}d\varepsilon + \bar{\zeta}\delta_0(d\varepsilon)$$

Winner-takes-all regime.

If $\bar{\zeta} > 0$ (i.e., $T < T_c$), the particle distribution is

$$\frac{g(\varepsilon)}{e^{\varepsilon/T}-1}d\varepsilon + \bar{\zeta}\delta_0(d\varepsilon)$$

Bianconi and Barabási (2000):

The fittest node is not only the largest, but despite the continuous emergence of new nodes that compete for links, it always acquires a finite fraction of links.

The rigorous proof was given later by Borgs, Chayes, Daskalakis and Roch (2007). The main idea is to consider the process as a **Generalised Pólya urn**

The rigorous proof was given later by Borgs, Chayes, Daskalakis and Roch (2007).

The main idea is to consider the process as a

Generalised Pólya urn

• there are $q < \infty$ bins and each bin *i* is assigned a fitness value η_i

The rigorous proof was given later by Borgs, Chayes, Daskalakis and Roch (2007).

The main idea is to consider the process as a

Generalised Pólya urn

- there are $q < \infty$ bins and each bin *i* is assigned a fitness value η_i
- each bin *i* is associated with a random vector $\xi_i = (\xi_{i,1}, \dots, \xi_{i,q})$

The rigorous proof was given later by Borgs, Chayes, Daskalakis and Roch (2007).

The main idea is to consider the process as a

Generalised Pólya urn

- ▶ there are $q < \infty$ bins and each bin *i* is assigned a fitness value η_i
- each bin *i* is associated with a random vector $\xi_i = (\xi_{i,1}, \dots, \xi_{i,q})$
- ► let X_n = (X_{n,1}, X_{n,2},..., X_{n,q}), where X_{n,i} is the number of balls in bin i at time n.

The rigorous proof was given later by Borgs, Chayes, Daskalakis and Roch (2007).

The main idea is to consider the process as a

Generalised Pólya urn

- ▶ there are $q < \infty$ bins and each bin *i* is assigned a fitness value η_i
- each bin *i* is associated with a random vector $\xi_i = (\xi_{i,1}, \dots, \xi_{i,q})$
- ► let X_n = (X_{n,1}, X_{n,2},..., X_{n,q}), where X_{n,i} is the number of balls in bin i at time n.
- at each time *n*, we pick bin *i* with probability proportional to $\eta_i X_{n-1,i}$

The rigorous proof was given later by Borgs, Chayes, Daskalakis and Roch (2007).

The main idea is to consider the process as a

Generalised Pólya urn

- there are $q < \infty$ bins and each bin i is assigned a fitness value η_i
- each bin *i* is associated with a random vector $\xi_i = (\xi_{i,1}, \dots, \xi_{i,q})$
- ► let X_n = (X_{n,1}, X_{n,2},..., X_{n,q}), where X_{n,i} is the number of balls in bin i at time n.
- at each time *n*, we pick bin *i* with probability proportional to $\eta_i X_{n-1,i}$
- if bin *i* is selected, we draw an independent copy ξⁿ_i of ξ_i and let X_n = X_{n−1} + ξⁿ_i

For the most general Pólya urn, see Mailler and Villemonais 2020

Let (X_n)_{n≥0} be a Markov chain and (𝒢_n)_{n≥0} the filtration
 Assume

$$\mathbb{E}[X_{n+1}-X_n|\mathcal{G}_n]=f_n(X_n),$$

Let (X_n)_{n≥0} be a Markov chain and (𝒢_n)_{n≥0} the filtration
 Assume

$$\mathbb{E}[X_{n+1}-X_n|\mathcal{G}_n]=f_n(X_n),$$

then

$$X_{n+1} - X_n = f_n(X_n) + R_{n+1} - R_n$$

where $R_n = X_n - \mathbb{E}[X_n | \mathscr{G}_{n-1}]$ and (R_n) is a martingale

・ロ ・ ・ 一戸 ・ ・ 注 ・ 注 ・ う へ で 28/44

Let (X_n)_{n≥0} be a Markov chain and (𝒢_n)_{n≥0} the filtration
 Assume

$$\mathbb{E}[X_{n+1}-X_n|\mathcal{G}_n]=f_n(X_n),$$

then

$$X_{n+1} - X_n = f_n(X_n) + R_{n+1} - R_n$$

where $R_n = X_n - \mathbb{E}[X_n | \mathscr{G}_{n-1}]$ and (R_n) is a martingale

In some good cases, no matter what the almost sure limit of R_n is, X_n always converges to the same constant

Let (X_n)_{n≥0} be a Markov chain and (𝒢_n)_{n≥0} the filtration
 Assume

$$\mathbb{E}[X_{n+1}-X_n|\mathcal{G}_n]=f_n(X_n),$$

then

$$X_{n+1} - X_n = f_n(X_n) + R_{n+1} - R_n$$

where $R_n = X_n - \mathbb{E}[X_n | \mathscr{G}_{n-1}]$ and (R_n) is a martingale

In some good cases, no matter what the almost sure limit of R_n is, X_n always converges to the same constant

Reference: Robbins and Monro 1951, and Kiefer and Wolfowitz 1952, Benaïm 1999

- Kingman's model
- Analogy to the Bose-Einstein condensation
- Mapping Bose-Einstein condensation with preferential attachment model with fitness
- A unifying approach: branching process with reinforcement

Branching processes with reinforcement

Definition (Dereich, Mailler and Mörters, 2017)

- the process starts with one family of one individual whose fitness is drawn from the distribution Q
 - ▶ at time *t* assume there exist M(t) families, and there are $Z_n(t)$ individuals of fitness F_n in the *n*-th family, for $1 \le n \le M(t)$

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

30/44

Branching processes with reinforcement

Definition (Dereich, Mailler and Mörters, 2017)

- the process starts with one family of one individual whose fitness is drawn from the distribution Q
 - ▶ at time *t* assume there exist M(t) families, and there are $Z_n(t)$ individuals of fitness F_n in the *n*-th family, for $1 \le n \le M(t)$
- independently, every individual gives birth with a rate equal to its fitness,
 - or equivalently, in the *n*-th family birth events occur with a time-dependent rate $F_n Z_n(t)$

Branching processes with reinforcement

Definition (Dereich, Mailler and Mörters, 2017)

- the process starts with one family of one individual whose fitness is drawn from the distribution Q
 - ▶ at time *t* assume there exist M(t) families, and there are $Z_n(t)$ individuals of fitness F_n in the *n*-th family, for $1 \le n \le M(t)$
- independently, every individual gives birth with a rate equal to its fitness,
 - or equivalently, in the *n*-th family birth events occur with a time-dependent rate $F_n Z_n(t)$
- when a birth even occurs in the n-th family,
 - with probability β a new family is founded, initially consisting of one individual with a fitness drawn from Q
 - with probability γ a new individual with fitness F_n is added to the *n*-th family

here we require $\beta + \gamma \ge 1$

Kingman's model as a special case

- individuals give birth to new individuals with a rate equal to their fitnesses
 - \blacktriangleright with probability β the new individual is a mutant with fitness drawn from
 - with probability 1β the new individual is not a mutant, then it inherits the fitness of its parent

Kingman's model as a special case

- individuals give birth to new individuals with a rate equal to their fitnesses
 - \blacktriangleright with probability β the new individual is a mutant with fitness drawn from
 - with probability 1β the new individual is not a mutant, then it inherits the fitness of its parent

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

31/44

This model corresponds to $\beta + \gamma = 1$ in the general model

Recall:

- ▶ it starts with one vertex with fitness drawn from *Q*
- at each time step, a new vertex is introduced, equipped with a fitness drawn from Q

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

32/44

the new vertex is linked to one of the present vertices with probability proportional to its fitness × its degree

Recall:

- ▶ it starts with one vertex with fitness drawn from *Q*
- ▶ at each time step, a new vertex is introduced, equipped with a fitness drawn from Q
- the new vertex is linked to one of the present vertices with probability proportional to its fitness × its degree
- It corresponds to β = γ = 1 in the general model
 - family = vertex, family size = its degree

Recall:

- ▶ it starts with one vertex with fitness drawn from *Q*
- ▶ at each time step, a new vertex is introduced, equipped with a fitness drawn from Q

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

32/44

- the new vertex is linked to one of the present vertices with probability proportional to its fitness × its degree
- It corresponds to $\beta = \gamma = 1$ in the general model
 - family = vertex, family size = its degree
 - at a birth event, a new family is founded
 - i.e., a new vertex is introduced

Recall:

- ▶ it starts with one vertex with fitness drawn from *Q*
- at each time step, a new vertex is introduced, equipped with a fitness drawn from Q
- the new vertex is linked to one of the present vertices with probability proportional to its fitness × its degree
- It corresponds to β = γ = 1 in the general model
 - family = vertex, family size = its degree
 - at a birth event, a new family is founded
 - i.e., a new vertex is introduced
 - at the same time, the family that gave birth increases its size by 1
 - i.e., the degree of the selected vertex increases by 1

The branching process with reinforcement is in fact a Crump-Mode-Jagers branching process

The branching process with reinforcement is in fact a Crump-Mode-Jagers branching process

A typical family

▶ born with one individual equipped with fitness *F* drawn from *Q* which is supported on (0,1) with Q(x,1) > 0, $\forall x \in (0,1)$

The branching process with reinforcement is in fact a Crump-Mode-Jagers branching process

A typical family

- ▶ born with one individual equipped with fitness *F* drawn from *Q* which is supported on (0,1) with $Q(x,1) > 0, \forall x \in (0,1)$
- ▶ the family size process $(Y(t))_{t\geq 0}$ grows as a Yule process with rate γF

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

33/44

The branching process with reinforcement is in fact a Crump-Mode-Jagers branching process

A typical family

- ▶ born with one individual equipped with fitness *F* drawn from *Q* which is supported on (0,1) with Q(x,1) > 0, $\forall x \in (0,1)$
- ▶ the family size process $(Y(t))_{t\geq 0}$ grows as a Yule process with rate γF
- Given (F, Y), the birth times of mutant offspring from this family is an inhomogeneous Poisson process (Π(t))_{t≥0} with intensity measure

$$\frac{\beta + \gamma - 1}{\gamma} \delta Y(t) + (1 - \gamma) FY(t) dt$$

A tyical family is characterised by (F, Y, Π)

More notations

Let $(\phi(t))_{t\geq 0}$ be the cadlag process taking values in \mathbb{N}_0 that assigns a score to a family t time units after its foundation. It is a function of (F, Y, Π)

More notations

Let $(\phi(t))_{t\geq 0}$ be the cadlag process taking values in \mathbb{N}_0 that assigns a score to a family t time units after its foundation. It is a function of (F, Y, Π)

The *n*-th family is characterised by $(F_n, Y_n, \Pi_n, \phi_n)$. Let τ_n be the birth time of the *n*-th family

More notations

Let $(\phi(t))_{t\geq 0}$ be the cadlag process taking values in \mathbb{N}_0 that assigns a score to a family t time units after its foundation. It is a function of (F, Y, Π)

The *n*-th family is characterised by $(F_n, Y_n, \Pi_n, \phi_n)$. Let τ_n be the birth time of the *n*-th family

Define

$$Z^{\phi}(t) = \sum_{n:\tau_n < t} \phi_n(t - \tau_n)$$

34/44

More notations

Let $(\phi(t))_{t\geq 0}$ be the cadlag process taking values in \mathbb{N}_0 that assigns a score to a family t time units after its foundation. It is a function of (F, Y, Π)

The *n*-th family is characterised by $(F_n, Y_n, \Pi_n, \phi_n)$. Let τ_n be the birth time of the *n*-th family

Define

$$Z^{\phi}(t) = \sum_{n:\tau_n < t} \phi_n(t - \tau_n)$$

(日) (同) (目) (日) (日) (0) (0)

34/44

Reference: Nerman 1981

Convergence and condensation

Lemma

The following two statements are equivalent and the resulting λ^* are the same

• there exists an $\lambda^* \ge \gamma$, called the Malthusian exponent, such that

$$\int_0^\infty e^{-\lambda^* s} \mathbb{E}[\Pi(ds)] = 1$$

• $\tilde{\zeta} \coloneqq 1 - \frac{\beta}{\gamma} \int_0^1 \frac{x}{1-x} Q(dx) \le 0$ and λ^* is the unique solution of

$$\beta \int_0^1 \frac{x}{\lambda^* - \gamma x} Q(dx) = 1$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Convergence and condensation

Define the empirical distribution

$$\Xi_t \coloneqq \frac{1}{N(t)} \sum_{n=1}^{M(t)} Z_n(t) \delta_{F_n}$$

here N(t) is the total number of individuals

Convergence and condensation

Define the empirical distribution

$$\Xi_t \coloneqq \frac{1}{N(t)} \sum_{n=1}^{M(t)} Z_n(t) \delta_{F_n}$$

here N(t) is the total number of individuals

Theorem

Assume ϕ satisfies some conditions. If $\tilde{\zeta} < 0$ (no condensation), then there exists a positive random variable W, not depending on ϕ such that

$$\lim_{t \to \infty} e^{-\lambda^* t} Z_t^{\phi} = W \frac{\int_0^\infty e^{-\lambda^* t} \mathbb{E}[\phi(t) dt]}{\int_0^\infty t e^{-\lambda^* t} \mathbb{E}[\Pi(dt)]}$$

Thus, $\Xi_t \to \pi$ almost surely weekly with $\pi(dx) = \beta \frac{x}{\lambda^* - \gamma x} Q(dx)$ If $\tilde{\zeta} \ge 0$ (condensation), then $\Xi_t \to \pi$ almost surely weakly where

$$\pi(dx) = \frac{\beta}{\gamma} \frac{x}{1 - x} Q(dx) + \tilde{\zeta} \delta_1$$

$$36/44$$

Other results

If $Q(1-h,1) = h^{\alpha}\ell(h)$ with $\alpha > 1$ and $\ell(h)$ slowly varying, then we are in the condensation regime

Other results

If $Q(1-h,1) = h^{\alpha}\ell(h)$ with $\alpha > 1$ and $\ell(h)$ slowly varying, then we are in the condensation regime

Moreover,

- $\frac{max_nZ_n(t)}{N(t)} \to 0, \quad t \to \infty$
- the largest families are born around T(t) = α/λ^{*} log t (if there is condensation, thenλ^{*} = γ; otherwise λ^{*} > γ)
- ► the largest families at time t have fitness 1 c/t and size of order e^{γ(t-T(t))}

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

37/44

Condensation scenarios

Terminology from Berg, Lewis and Pulè (1986)

- Macroscopic occupation of the ground state: the proportion of individuals in the largest family is asymptotically positive
- Non-extensive condensation: no single family makes an asymptotically positive contribution. The condensation is a collective efforts of a growing number of families

Further questions

- does the condensation wave behave like Gamma function?
- what if fitness can be arbitrarily large?
- can we compute the genealogy and see if there is any connection between the genealogy and the condensation?

- Kingman's model
- Analogy to the Bose-Einstein condensation
- Mapping Bose-Einstein condensation with preferential attachment model with fitness
- A unifying approach: branching process with reinforcement

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

40/44

Random permutation model

Random permutaion model

It is tightly connected to the Bose-Einstein condensation for Boson gas, see Betz and Ueltschi (2009, 2011)

Random permutaion model

It is tightly connected to the Bose-Einstein condensation for Boson gas, see Betz and Ueltschi (2009, 2011)

Definition

The probability of a permutation π of $\{1, 2, ..., n\}$ is defined as

$$\mathbb{P}_n(\pi) = \frac{\prod_{j\geq 1} \theta_j^{r_j(\pi)}}{h_n n!}$$

・ロト ・ 日 ・ モ ・ モ ・ モ ・ つくぐ

41/44

where

- $r_j(\pi)$ is the number of cycles of length j
- $\theta_j > 0$ is the weight for the cycle of length j
- *h_n* is a normalisation

Random permutaion model

It is tightly connected to the Bose-Einstein condensation for Boson gas, see Betz and Ueltschi (2009, 2011)

Definition

The probability of a permutation π of $\{1, 2, \ldots, n\}$ is defined as

$$\mathbb{P}_n(\pi) = \frac{\prod_{j \ge 1} \theta_j^{r_j(\pi)}}{h_n n!}$$

where

- $r_j(\pi)$ is the number of cycles of length j
- $\theta_j > 0$ is the weight for the cycle of length j
- *h_n* is a normalisation

Remarks

1. If $\theta_j = \theta$ for all *j*, this is the Ewens sampling formula 2. This is a problem of allocating distinguishable balls in indistinguishable boxes

Main results

- assume $\theta_j = j^{\alpha} \ell(j)$ for $\alpha > 0$ and ℓ slowly varying.
- let $\beta_n = \sum_{j=1}^n \theta_j$ and $\beta^{\leftarrow}(t) = \min\{n : \beta_n \ge t\}$
- define the empirical cycle length distribution

$$\mu_n = \frac{1}{n} \sum_{i \ge 1} \lambda_i \delta_{\frac{\lambda_i}{\beta^{\leftarrow}(n)}}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots$ are ordered cycle lengths of a random permutation

Main results

- assume $\theta_j = j^{\alpha} \ell(j)$ for $\alpha > 0$ and ℓ slowly varying.
- let $\beta_n = \sum_{j=1}^n \theta_j$ and $\beta^{\leftarrow}(t) = \min\{n : \beta_n \ge t\}$
- define the empirical cycle length distribution

$$\mu_n = \frac{1}{n} \sum_{i \ge 1} \lambda_i \delta_{\frac{\lambda_i}{\beta^{\leftarrow}(n)}}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots$ are ordered cycle lengths of a random permutation

Then

$$\lim_{n\to\infty}\mu_n[0,x] = (\gamma+1)\int_0^x y^\alpha e^{-\Gamma(\alpha+2)\frac{1}{\alpha+1}y}dy$$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < 0 < 0 < 42/44

Conclusions

- many models exhibit condensation phenomena with universal characteristics
- finer properties of condensation are still missing:
 - dominant players
 - condensation/travelling wave
 - random environment
 - genealogy vs condensation, etc
- new and more general models to explore (achieving different condensation scenarios)

Thank you for your attention!

< □ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ○ 44/44