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Outline

▸ Kingman’s model

▸ Analogy to the Bose-Einstein condensation

▸ Mapping Bose-Einstein condensation with preferential
attachment model with fitness

▸ A unifying approach: branching process with reinforcement

▸ Random permutation model
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▸ Kingman’s model
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Population characteristics

Consider a population that has

▸ infinite size

▸ discrete generations

▸ haploidy (one gender)

▸ selection and mutation

What would a suitable population model look like?
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Main ideas

Fitness and fitness distribution

▸ an individual is represented by its fitness value1 x ∈ [0,1]

▸ the population at the n-th generation is represented by the
fitness distribution Pn on [0,1]

Mutation

▸ an individual is born as mutant with probability b ∈ (0,1)

▸ the fitness value of a mutant is drawn independently from the
same mutant distribution Q on [0,1]

Selection

▸ individuals with larger fitness values will produce more
offspring in the next generation

1can be considered as the reproduction ability
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Kingman’s model (1978)

The model has three parameters (P0,Q,b) and is defined as:

Pn+1(dx) = (1 − b)
xPn(dx)

∫
1
0 yPn(dy)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

selection

+ bQ(dx)
´¹¹¹¹¹¸¹¹¹¹¹¹¶
mutation

, n ≥ 0,

where

▸ Q is the mutant distribution

▸ Pn is the fitness distribution at the n-th generation for n ≥ 0

▸ b ∈ (0,1) is the deterministic mutation probability

Question

▸ Will Pn converge? What does the limit look like?
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Kingman’s result

Let h ∶= sup{x ∶ Q([x ,1]) + P0([x ,1]) > 0}. So h is interpreted as

“the largest fitness value of the population.”

Define ζ(b) ∶= 1 − b ∫
Q(dy)
1−y/h .

Lemma
ζ(b) ≤ 0 if and only if there exists a unique solution θ of the
equation

∫
bθQ(dx)

θ − (1 − b)x
= 1, θ ≥ (1 − b)h
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Kingman’s result

Theorem (Kingman, 1978)

Democracy regime.
If ζ(b) ≤ 0, then (Pn)n≥0 converges strongly to

bθQ(dx)

θ − (1 − b)x
,

with θ being the unique solution of ∫
bθQ(dx)
θ−(1−b)x = 1.

Meritocracy/ Aristocracy regime.
If ζ(b) > 0, then (Pn)n≥0 converges weakly to

bQ(dx)

1 − x/h
+ ζ(b)δh(dx),

here δh(dx) is the Dirac measure at h. Condensation occurs.
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Interplay of selection and mutation

Democracy regime (no condensation): b ∫
Q(dy)
1−y/h ≥ 1

▸ high mutation probability

▸ fit mutation distribution

That is, mutation dominates selection.

Meritocracy/Aristocracy regime (condensation):b ∫
Q(dy)
1−y/h < 1

▸ low mutation probability

▸ less fit mutation distribution

That is, selection dominates mutation.
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A main gradient in the proof

Let wn = ∫ xPn(dx), µn = ∫ x
nQ(dx),mn = ∫ x

nP0(dx). Let

Wn = w0w1⋯wn−1

Then (Wn) satisfies

Wn =
n−1

∑
i=1

Wn−i × (1 − b)
ibµi + (1 − b)

nmn
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Condensation wave

Theorem (Dereich and Mörters 2013)

Assume mn/µn → 0 and there exists α > 1 such that

Q(1 − t,1) ∼ tα, t → 0.

If ζ(b) > 0 (condensation), then

lim
n↑∞

Pn(1 − x/n,1) =
ζ(b)

Γ(α) ∫
x

0
yα−1e−ydy , for any x > 0.
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Condensation wave

Figure: Dereich and Mörters 2013
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Conjectures

1. Dereich and Mörters proposed a conjecture that the
Gamma-shape condensation wave is universal in Kingman-like
models.

2. In Kingman’s model, if we replace b by a sequence of i.i.d.
mutation probabilities (βn) for all generations with E[βn] = b,
▸ how will that affect the condensation compared to the original

model?

▸ will the same effects apply to Kingman-like models?
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Similar models

▸ Lenski experiment (Y, 2017). Fix λ > 0. Consider a population
model as follows

Pn+1(dx) = (1 − b)
etnxPn(dx)

λ
+ bQ(dx), n ≥ 0,

where tn is a number such that

∫ etnxPn(dx) = λ.
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Similar models

▸ Continuous-time model (Betz, Dereich and Mörters, 2017).

Let M be a certain set of nonnegative finite measures on R+.
Let B ∶M ↦ C(R+),C ∶M ↦ C(R+). Fix α > 0 and define

∂tPt(dx) = B[Pt]Pt(dx) + x
αC [Pt]dx .

It is a generalisation of continuous-time Kingman’s model,
note that (6) is equivalent to

Pn+1(dx)−Pn(dx) = (1 − b)(
x

∫ yPn(dy)
− 1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B[Pn]

Pn(dx)+ bQ(dx)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
xαC[Pn]dx
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Similar models

▸ Unbounded fitness (Park and Krug, 2008)

Consider the model

fn+1(x) = (1 − b)
xfn(x)

∫ yfn(y)dy
+ bg(x)

where
▸ g(x) = e−x1x≥0 is the density of Q
▸ fn(x) is the density of Pn

Roughly, it holds that

fn(x) ≈ be
−x
+ (1 − b)ϕn,n(x)

where ϕn,n is the density of N(n,n).

Conjecture: is the Gaussian travelling wave universal?
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▸ Kingman’s model

▸ Analogy to the Bose-Einstein condensation
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Boson gas4

▸ consider indistinguishable particles of an ideal2 Boson gas in a
closed box with rigid walls and fixed volume V

▸ at the energy level εi , there are g(εi) distinguishable states
corresponding to εi

▸ assume there are n(εi) particles at the energy level εi , the
number of configurations3 is

(
n(εi) + g(εi) − 1

n(εi)
)

2meaning no particle interaction
3we refer to Janson 2012 for a survey on balls-in-boxes model, simply

generated trees and related condensation phenomenon
4thanks to my physicist friend Dr. Lingxuan Shao (SPEIT) for discussions
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Boson gas

▸ to achieve maximum entropy, we maximise

∏
i

(
ni + g(εi) − 1

ni
)

subject to

∑
i

ni = N, ∑
i

εini = U

with N the total number of particles and U the total energy

▸ we obtain

n(ε) =
g(ε)

e(ε−µ)/kT − 1

with T the temperature, µ ≤ 0 the chemical potential and k
the Boltzmann constant
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Approximation by the continuum setting

For energy levels within (ε, ε + dε), there are g(ε)dε states,
where:

g(ε) =
V

4π2
(
2m

h̵2
)

3
2 √

ε

Then

∑
i

n(εi) = ∫
g(ε)

e(ε−µ)/kT − 1
dε = N
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Bose-Einstein condensation

Let ζ̂ = 1 − ∫
g(ε)

eε/kT−1
dε.

Then

▸ if ζ̂ ≤ 0 (i.e., T > Tc), the particle distribution is

n(ε)dε =
g(ε)

e(ε−µ)/kT − 1
dε,

where µ is the unique solution of ∫
g(ε)

e(ε−µ)/kT−1
dε = N

▸ if ζ̂ > 0 (i.e.,T < Tc), the particle distribution is

g(ε)

eε/kT − 1
dε + ζ̂δ0(dε)

21/44



Bose-Einstein condensation

Let ζ̂ = 1 − ∫
g(ε)

eε/kT−1
dε. Then

▸ if ζ̂ ≤ 0 (i.e., T > Tc), the particle distribution is

n(ε)dε =
g(ε)

e(ε−µ)/kT − 1
dε,

where µ is the unique solution of ∫
g(ε)

e(ε−µ)/kT−1
dε = N

▸ if ζ̂ > 0 (i.e.,T < Tc), the particle distribution is

g(ε)

eε/kT − 1
dε + ζ̂δ0(dε)

21/44



▸ Kingman’s model

▸ Analogy to the Bose-Einstein condensation

▸ Mapping Bose-Einstein condensation with preferential
attachment model with fitness
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Preferential attachment model with fitness

Bianconi and Barabási (2000) introduced the preferential
attachment model with fitness

▸ discrete: the network grows in discrete times

▸ addition: at each time step we add a new node.
▸ a fitness value ηn is assigned to the n-th node, sampled

independently from a common distribution on (0,1)

▸ connection: the n−th node is connected to the j−th node with
probability

kjηj

∑
n−1
i=1 kiηi

where ki is the degree (number of links) of the i−th node
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Mapping

Define εn = −T log ηn, which is mapped to an energy level in a
Boson gas
▸ adding the n−th node into the network corresponds to

▸ adding a new energy level εn+1 and
▸ 2 non-interacting particles to the system

▸ for the 2 particles added to the system
▸ one particle sits at the level εn, and
▸ the other one at level εj with probability

kjηj

∑
n−1
i=1 kiηi
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Bose-Einstein condensation

Let g(ε) be the density of the distribution from which εn is drawn.

Let ζ̄ = 1 − ∫
g(ε)

eε/T−1
dε. Then in the limit n →∞

▸ Fit-get-rich regime.
If ζ̄ ≤ 0 (i.e., T > Tc), the particle (link) distribution is

g(ε)

e(ε−µ∗)/T − 1
dε,

where µ∗ is the unique solution of ∫
g(ε)

e(ε−µ
∗)/T−1

dε = 1
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▸ Winner-takes-all regime.
If ζ̄ > 0 (i.e.,T < Tc), the particle distribution is

g(ε)

eε/T − 1
dε + ζ̄δ0(dε)

Bianconi and Barabási (2000):

The fittest node is not only the largest, but despite the continuous
emergence of new nodes that compete for links, it always acquires
a finite fraction of links.
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Main proof ingredient

The rigorous proof was given later by Borgs, Chayes, Daskalakis
and Roch (2007).
The main idea is to consider the process as a
Generalised Pólya urn

▸ there are q < ∞ bins and each bin i is assigned a fitness value
ηi

▸ each bin i is associated with a random vector ξi = (ξi ,1,⋯, ξi ,q)

▸ let Xn = (Xn,1,Xn,2, . . . ,Xn,q), where Xn,i is the number of
balls in bin i at time n.

▸ at each time n, we pick bin i with probability proportional to
ηiXn−1,i

▸ if bin i is selected, we draw an independent copy ξni of ξi and
let Xn = Xn−1 + ξ

n
i

For the most general Pólya urn, see Mailler and Villemonais 2020
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▸ there are q < ∞ bins and each bin i is assigned a fitness value
ηi

▸ each bin i is associated with a random vector ξi = (ξi ,1,⋯, ξi ,q)

▸ let Xn = (Xn,1,Xn,2, . . . ,Xn,q), where Xn,i is the number of
balls in bin i at time n.

▸ at each time n, we pick bin i with probability proportional to
ηiXn−1,i

▸ if bin i is selected, we draw an independent copy ξni of ξi and
let Xn = Xn−1 + ξ

n
i
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For the most general Pólya urn, see Mailler and Villemonais 2020

27/44



Main proof ingredient

The rigorous proof was given later by Borgs, Chayes, Daskalakis
and Roch (2007).
The main idea is to consider the process as a
Generalised Pólya urn
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Stochastic approximation

▸ Let (Xn)n≥0 be a Markov chain and (Gn)n≥0 the filtration

▸ Assume
E[Xn+1 −Xn ∣Gn] = fn(Xn),

then
Xn+1 −Xn = fn(Xn) + Rn+1 − Rn

where Rn = Xn −E[Xn ∣Gn−1] and (Rn) is a martingale

▸ In some good cases, no matter what the almost sure limit of
Rn is, Xn always converges to the same constant

Reference: Robbins and Monro 1951, and Kiefer and Wolfowitz
1952, Benäım 1999
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▸ Kingman’s model

▸ Analogy to the Bose-Einstein condensation

▸ Mapping Bose-Einstein condensation with preferential
attachment model with fitness

▸ A unifying approach: branching process with reinforcement
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Branching processes with reinforcement

Definition (Dereich, Mailler and Mörters, 2017)

▸ the process starts with one family of one individual whose
fitness is drawn from the distribution Q
▸ at time t assume there exist M(t) families, and there are Zn(t)

individuals of fitness Fn in the n-th family, for 1 ≤ n ≤M(t)

▸ independently, every individual gives birth with a rate equal to
its fitness,
▸ or equivalently, in the n-th family birth events occur with a

time-dependent rate FnZn(t)

▸ when a birth even occurs in the n-th family,
▸ with probability β a new family is founded, initially consisting

of one individual with a fitness drawn from Q
▸ with probability γ a new individual with fitness Fn is added to

the n-th family

here we require β + γ ≥ 1
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Kingman’s model as a special case

▸ individuals give birth to new individuals with a rate equal to
their fitnesses
▸ with probability β the new individual is a mutant with fitness

drawn from
▸ with probability 1 − β the new individual is not a mutant, then

it inherits the fitness of its parent

This model corresponds to β + γ = 1 in the general model
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Preferential attachment model as a special case

Recall:

▸ it starts with one vertex with fitness drawn from Q

▸ at each time step, a new vertex is introduced, equipped with a
fitness drawn from Q

▸ the new vertex is linked to one of the present vertices with
probability proportional to its fitness × its degree

It corresponds to β = γ = 1 in the general model

▸ family = vertex, family size = its degree

▸ at a birth event, a new family is founded
▸ i.e., a new vertex is introduced

▸ at the same time, the family that gave birth increases its size
by 1
▸ i.e., the degree of the selected vertex increases by 1

32/44



Preferential attachment model as a special case

Recall:

▸ it starts with one vertex with fitness drawn from Q

▸ at each time step, a new vertex is introduced, equipped with a
fitness drawn from Q

▸ the new vertex is linked to one of the present vertices with
probability proportional to its fitness × its degree

It corresponds to β = γ = 1 in the general model

▸ family = vertex, family size = its degree

▸ at a birth event, a new family is founded
▸ i.e., a new vertex is introduced

▸ at the same time, the family that gave birth increases its size
by 1
▸ i.e., the degree of the selected vertex increases by 1

32/44



Preferential attachment model as a special case

Recall:

▸ it starts with one vertex with fitness drawn from Q

▸ at each time step, a new vertex is introduced, equipped with a
fitness drawn from Q

▸ the new vertex is linked to one of the present vertices with
probability proportional to its fitness × its degree

It corresponds to β = γ = 1 in the general model

▸ family = vertex, family size = its degree

▸ at a birth event, a new family is founded
▸ i.e., a new vertex is introduced

▸ at the same time, the family that gave birth increases its size
by 1
▸ i.e., the degree of the selected vertex increases by 1

32/44



Preferential attachment model as a special case

Recall:

▸ it starts with one vertex with fitness drawn from Q

▸ at each time step, a new vertex is introduced, equipped with a
fitness drawn from Q

▸ the new vertex is linked to one of the present vertices with
probability proportional to its fitness × its degree

It corresponds to β = γ = 1 in the general model

▸ family = vertex, family size = its degree

▸ at a birth event, a new family is founded
▸ i.e., a new vertex is introduced

▸ at the same time, the family that gave birth increases its size
by 1
▸ i.e., the degree of the selected vertex increases by 1

32/44



It is a Crump-Mode-Jagers process

The branching process with reinforcement is in fact a
Crump-Mode-Jagers branching process

A typical family

▸ born with one individual equipped with fitness F drawn from
Q which is supported on (0,1) with Q(x ,1) > 0,∀x ∈ (0,1)

▸ the family size process (Y (t))t≥0 grows as a Yule process with
rate γF

▸ Given (F ,Y ), the birth times of mutant offspring from this
family is an inhomogeneous Poisson process (Π(t))t≥0 with
intensity measure

β + γ − 1

γ
δY (t) + (1 − γ)FY (t)dt

A tyical family is characterised by (F ,Y ,Π)
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More notations

Let (ϕ(t))t≥0 be the cadlag process taking values in N0 that
assigns a score to a family t time units after its foundation. It is a
function of (F ,Y ,Π)

The n-th family is characterised by (Fn,Yn,Πn, ϕn). Let τn be the
birth time of the n-th family

Define
Zϕ
(t) = ∑

n∶τn<t

ϕn(t − τn)

Reference: Nerman 1981
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Convergence and condensation

Lemma
The following two statements are equivalent and the resulting λ∗

are the same

▸ there exists an λ∗ ≥ γ, called the Malthusian exponent, such
that

∫

∞

0
e−λ

∗sE[Π(ds)] = 1

▸ ζ̃ ∶= 1 − β
γ ∫

1
0

x
1−xQ(dx) ≤ 0 and λ∗ is the unique solution of

β ∫
1

0

x

λ∗ − γx
Q(dx) = 1
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Convergence and condensation
Define the empirical distribution

Ξt ∶=
1

N(t)

M(t)

∑
n=1

Zn(t)δFn

here N(t) is the total number of individuals

Theorem
Assume ϕ satisfies some conditions.
If ζ̃ < 0 (no condensation), then there exists a positive random
variable W , not depending on ϕ such that

lim
t→∞

e−λ
∗tZϕ

t =W
∫
∞

0 e−λ
∗tE[ϕ(t)dt]

∫
∞

0 te−λ∗tE[Π(dt)]

Thus, Ξt → π almost surely weekly with π(dx) = β x
λ∗−γxQ(dx)

If ζ̃ ≥ 0 (condensation), then Ξt → π almost surely weakly where

π(dx) =
β

γ

x

1 − x
Q(dx) + ζ̃δ1
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Other results

If Q(1− h,1) = hαℓ(h) with α > 1 and ℓ(h) slowly varying, then we
are in the condensation regime

Moreover,

▸ maxnZn(t)
N(t) → 0, t →∞

▸ the largest families are born around T (t) = α
λ∗ log t (if there is

condensation, thenλ∗ = γ; otherwise λ∗ > γ)

▸ the largest families at time t have fitness 1 − c/t and size of
order eγ(t−T(t))
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Condensation scenarios

Terminology from Berg, Lewis and Pulè (1986)

▸ Macroscopic occupation of the ground state: the proportion
of individuals in the largest family is asymptotically positive

▸ Non-extensive condensation: no single family makes an
asymptotically positive contribution. The condensation is a
collective efforts of a growing number of families
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Further questions

▸ does the condensation wave behave like Gamma function?

▸ what if fitness can be arbitrarily large?

▸ can we compute the genealogy and see if there is any
connection between the genealogy and the condensation?
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▸ Kingman’s model

▸ Analogy to the Bose-Einstein condensation

▸ Mapping Bose-Einstein condensation with preferential
attachment model with fitness

▸ A unifying approach: branching process with reinforcement

▸ Random permutation model
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Random permutaion model
It is tightly connected to the Bose-Einstein condensation for Boson
gas, see Betz and Ueltschi (2009, 2011)

Definition
The probability of a permutation π of {1,2, . . . ,n} is defined as

Pn(π) =
∏j≥1 θ

rj(π)
j

hnn!

where

▸ rj(π) is the number of cycles of length j

▸ θj > 0 is the weight for the cycle of length j

▸ hn is a normalisation

Remarks
1. If θj = θ for all j , this is the Ewens sampling formula
2. This is a problem of allocating distinguishable balls in
indistinguishable boxes
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Main results

▸ assume θj = j
αℓ(j) for α > 0 and ℓ slowly varying.

▸ let βn = ∑
n
j=1 θj and β←(t) = min{n ∶ βn ≥ t}

▸ define the empirical cycle length distribution

µn =
1

n
∑
i≥1

λiδ λi

β←(n)

where λ1 ≥ λ2 ≥ ⋯ are ordered cycle lengths of a random
permutation

Then

lim
n→∞

µn[0, x] = (γ + 1)∫
x

0
yαe−Γ(α+2)

1
α+1 ydy
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Conclusions

▸ many models exhibit condensation phenomena with universal
characteristics

▸ finer properties of condensation are still missing:
▸ dominant players
▸ condensation/travelling wave
▸ random environment
▸ genealogy vs condensation, etc

▸ new and more general models to explore (achieving different
condensation scenarios)
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Thank you for your attention!
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