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» Kingman's model
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Population characteristics

Consider a population that has
> infinite size
> discrete generations
» haploidy (one gender)
> selection and mutation

What would a suitable population model look like?
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Main ideas

Fitness and fitness distribution
» an individual is represented by its fitness value! x € [0,1]

> the population at the n-th generation is represented by the
fitness distribution P, on [0,1]

lcan be considered as the reproduction ability
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Main ideas

Fitness and fitness distribution
» an individual is represented by its fitness value! x € [0,1]

> the population at the n-th generation is represented by the
fitness distribution P, on [0,1]

Mutation
» an individual is born as mutant with probability be (0,1)

> the fitness value of a mutant is drawn independently from the
same mutant distribution Q on [0,1]

Selection

» individuals with larger fitness values will produce more
offspring in the next generation

!can be considered as the reproduction ability
5/44



Kingman's model (1978)

The model has three parameters (Py, Q, b) and is defined as:

Pn(d.
fi(x) +bQ(dx), n>0,
Jo yPaldy)  ——
| — mutation
selection

Pni1(dx) = (1-b)

where
» @ is the mutant distribution
> P, is the fitness distribution at the n-th generation for n >0

» be(0,1) is the deterministic mutation probability
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Kingman's model (1978)

The model has three parameters (Py, Q, b) and is defined as:

Pn(d.
fi(x) +bQ(dx), n>0,
/b.yPn(dY) —
| — mutation
selection

Pni1(dx) = (1-b)

where
» @ is the mutant distribution
> P, is the fitness distribution at the n-th generation for n >0

» be(0,1) is the deterministic mutation probability

Question
> Will P, converge? What does the limit look like?
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Kingman's result

Let h:= sup{x: Q([x,1]) + Po([x,1]) > 0}. So h is interpreted as
“the largest fitness value of the population.”

Define ¢(b) =1~ b [ &),
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Kingman's result

Let h:= sup{x: Q([x,1]) + Po([x,1]) > 0}. So h is interpreted as
“the largest fitness value of the population.”

Define ¢(b) =1~ b [ &),
Lemma
C(b) <0 if and only if there exists a unique solution 6 of the
equation
bOQ(dx)
——— =1, 0>(1-b)h
I-(1-by b 0270
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Kingman's result

Theorem (Kingman, 1978)

Democracy regime.
If ((b) <0, then (Pp)ns0 converges strongly to

bOQ(dx)
0-(1-b)x’

bOQ(dx) _ 1

with 6 being the unique solution of [ T (byx =
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Kingman's result

Theorem (Kingman, 1978)

Democracy regime.
If ((b) <0, then (Pp)ns0 converges strongly to

bOQ(dx)
0-(1-b)x’

bOQ(dx) _ 1

with 6 being the unique solution of [ T (byx =

Meritocracy/ Aristocracy regime.
If ((b) >0, then (P,)ns0 converges weakly to

bQ(dx)
1-x/h

+((b)dn(dx),
here 6,(dx) is the Dirac measure at h. Condensation occurs.
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Interplay of selection and mutation

Democracy regime (no condensation): b [ 1-y/h 21
> high mutation probability
> fit mutation distribution

That is, mutation dominates selection.

Meritocracy/Aristocracy regime (condensation):b [ ?_(—m <1

> low mutation probability
> less fit mutation distribution

That is, selection dominates mutation.
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A main gradient in the proof

Let wy = [ xPp(dx), pun = [ x"Q(dx), ms = [ x"Po(dx). Let

W, = wowy - Wp_1
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A main gradient in the proof

Let wy = [ xPp(dx), pun = [ x"Q(dx), ms = [ x"Po(dx). Let
Wi = wowy-wp_1

Then (W,) satisfies

n-1 .
W,, = Z Wn_,‘ X (1 - b)'b,u,- + (1 - b)”m,,
i=1

10/44



Condensation wave

Theorem (Dereich and Mérters 2013)

Assume mp [, — 0 and there exists « > 1 such that

Q(l-t,1)~t* t-0.
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Condensation wave

Theorem (Dereich and Mérters 2013)

Assume mp/p, — 0 and there exists « > 1 such that
Q(l-t,1)~t* t-0.
If {(b) >0 (condensation), then
¢(b)

X
IiTm P,(1-x/n1) = 2—= f y*teYdy, forany x> 0.
ntoo 0

M)

11/44



Condensation wave

1-1/n 1

Figure: Dereich and Morters 2013
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Conjectures

1. Dereich and Morters proposed a conjecture that the
Gamma-shape condensation wave is universal in Kingman-like
models.
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Conjectures

1. Dereich and Morters proposed a conjecture that the
Gamma-shape condensation wave is universal in Kingman-like
models.

2. In Kingman's model, if we replace b by a sequence of i.i.d.
mutation probabilities (3,) for all generations with E[3,] = b,

> how will that affect the condensation compared to the original
model?

> will the same effects apply to Kingman-like models?
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Similar models

» Lenski experiment (Y, 2017). Fix A > 0. Consider a population
model as follows

et P,(dx)

Pn+1(dX)=(1—b) b\

+bQ(dx), n>0,
where t, is a number such that

f e P (dx) = \.
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Similar models

» Continuous-time model (Betz, Dereich and Morters, 2017).

Let M be a certain set of nonnegative finite measures on R,.

Let B: M+~ C(R;),C: M+~ C(R;). Fix a >0 and define

0t Pe(dx) = B[ P¢] P (dx) + x*C[ Pt ]dx.

15/44



Similar models

» Continuous-time model (Betz, Dereich and Morters, 2017).

Let M be a certain set of nonnegative finite measures on R,.
Let B: M+~ C(R;),C: M+~ C(R;). Fix a >0 and define

0t Pe(dx) = B[ P¢] P (dx) + x*C[ Pt ]dx.

It is a generalisation of continuous-time Kingman's model,
note that (6) is equivalent to

X
S yPua(dy) 1) Prldx)+ 5QUdx)
x®C[Pn]dx

Pni1(dx)—Pp(dx) = (1 - b) (

B[Py]
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Similar models

» Unbounded fitness (Park and Krug, 2008)

Consider the model

xfp(x)

Fra(x) = (1 - b)fyfn(y)dy

+ bg(x)

where
» g(x)=e 1,0 is the density of Q
> f,(x) is the density of P,
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where
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Similar models
» Unbounded fitness (Park and Krug, 2008)

Consider the model
xfp(x)

T ve()dy be()

fa(x) = (1~ b)

where
» g(x)=e 1,0 is the density of Q
> f,(x) is the density of P,

Roughly, it holds that
fa(x) ~» be™ + (1 - b)pp n(x)
where ¢, , is the density of N(n, n).

Conjecture: is the Gaussian travelling wave universal?
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» Kingman's model

> Analogy to the Bose-Einstein condensation
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Boson gas*

» consider indistinguishable particles of an ideal? Boson gas in a
closed box with rigid walls and fixed volume V

> at the energy level ¢}, there are g(e;) distinguishable states
corresponding to ¢;

2meaning no particle interaction
3we refer to Janson 2012 for a survey on balls-in-boxes model, simply
generated trees and related condensation phenomenon
*thanks to my physicist friend Dr. Lingxuan Shao (SPEIT) for discussions
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Boson gas*

» consider indistinguishable particles of an ideal? Boson gas in a
closed box with rigid walls and fixed volume V

> at the energy level ¢}, there are g(e;) distinguishable states
corresponding to ¢;

» assume there are n(e;) particles at the energy level ;, the
number of configurations® is

(")

2meaning no particle interaction
3we refer to Janson 2012 for a survey on balls-in-boxes model, simply
generated trees and related condensation phenomenon
*thanks to my physicist friend Dr. Lingxuan Shao (SPEIT) for discussions
18/44



Boson gas

> to achieve maximum entropy, we maximise

I (”i +g(ei) - 1)

i n;

subject to

Zn;ZN, ZE,’I’I,’ZU

with N the total number of particles and U the total energy
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Boson gas

> to achieve maximum entropy, we maximise

I (”i +g(ei) - 1)

i n;

subject to

Zn;ZN, ZE,’I’I,’ZU

with N the total number of particles and U the total energy

» we obtain
n(e) = g(e)

(/KT _ 1

with T the temperature, 1 < 0 the chemical potential and k
the Boltzmann constant
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Approximation by the continuum setting

For energy levels within (g, + de), there are g(¢)de states,
where:

=35 (3) 2
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Approximation by the continuum setting

For energy levels within (g, + de), there are g(¢)de states,
where:

£ - % (22) e

Then £()
13
”(5) fece o _19e =N
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Bose-Einstein condensation

Let {=1-[ £C) _ge.

ec/kT _1
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Bose-Einstein condensation

Let (=1-f ejﬁ)_l de. Then
> if é <0 (i.e., T > T¢), the particle distribution is

g(e)

n(a)de = m

de,

where p is the unique solution of [ %ds =N

» if (>0 (i.e., T < T¢), the particle distribution is

e N
%d“@o(da)
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» Kingman's model
> Analogy to the Bose-Einstein condensation

> Mapping Bose-Einstein condensation with preferential
attachment model with fitness
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Preferential attachment model with fitness

Bianconi and Barabdsi (2000) introduced the preferential
attachment model with fitness

> discrete: the network grows in discrete times
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Preferential attachment model with fitness

Bianconi and Barabdsi (2000) introduced the preferential
attachment model with fitness

> discrete: the network grows in discrete times

» addition: at each time step we add a new node.

> a fitness value 7, is assigned to the n-th node, sampled
independently from a common distribution on (0,1)

» connection: the n—th node is connected to the j—th node with
probability
kinj
S kini

where k; is the degree (number of links) of the i—th node
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Mapping

Define €, = =T log 1, which is mapped to an energy level in a
Boson gas

» adding the n—th node into the network corresponds to

> adding a new energy level €,,1 and
> 2 non-interacting particles to the system
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Mapping

Define €, = =T log 1, which is mapped to an energy level in a
Boson gas
» adding the n—th node into the network corresponds to

> adding a new energy level €,,1 and
> 2 non-interacting particles to the system

> for the 2 particles added to the system

> one particle sits at the level ¢, and
> the other one at level ¢; with probability

kinj
St kin;
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Bose-Einstein condensation

Let g(e) be the density of the distribution from which ¢, is drawn.

Let(=1-[ ef/(le de. Then in the limit n — oo

> Fit-get-rich regime.
If (<0 (i.e., T > T¢), the particle (link) distribution is

g(e)

it 1%

* ; ; g(e) -
where p* is the unique solution of [ mds =1
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> Winner-takes-all regime.
If (>0 (i.e., T < T¢), the particle distribution is

65583 ] de + (oo (de)
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> Winner-takes-all regime.
If (>0 (i.e., T < T¢), the particle distribution is

65583 ] de + (oo (de)

Bianconi and Barabasi (2000):

The fittest node is not only the largest, but despite the continuous
emergence of new nodes that compete for links, it always acquires
a finite fraction of links.
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Main proof ingredient

The rigorous proof was given later by Borgs, Chayes, Daskalakis
and Roch (2007).

The main idea is to consider the process as a

Generalised Pdlya urn
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Main proof ingredient

The rigorous proof was given later by Borgs, Chayes, Daskalakis

and

Roch (2007).

The main idea is to consider the process as a
Generalised Pdlya urn

>

there are g < oo bins and each bin /7 is assigned a fitness value
ni

each bin 7 is associated with a random vector &; = (&1, iq)
let X, = (Xn,1,Xn2,...,Xnq), where X, ; is the number of
balls in bin / at time n.

at each time n, we pick bin / with probability proportional to
77an—1,1'

if bin 7 is selected, we draw an independent copy &/ of &; and
let Xj = X1 + &7

For the most general Pdlya urn, see Mailler and Villemonais 2020
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Stochastic approximation

» Let (X;)ns0 be a Markov chain and (%,)ns0 the filtration

> Assume
]E[Xn+1 - Xn | gn] = fn(Xn)a
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Stochastic approximation

» Let (X;)ns0 be a Markov chain and (%,)ns0 the filtration

> Assume
]E[Xn+1 - Xn | gn] = fn(Xn)a

then
Xn+1 - Xn = fn(Xn) + Rn+1 - Rn

where R, = X, —E[X,|¥9,-1] and (R,) is a martingale

> In some good cases, no matter what the almost sure limit of
R, is, X, always converges to the same constant

Reference: Robbins and Monro 1951, and Kiefer and Wolfowitz
1952, Benaim 1999
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Mapping Bose-Einstein condensation with preferential
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A unifying approach: branching process with reinforcement
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Branching processes with reinforcement

Definition (Dereich, Mailler and Morters, 2017)

> the process starts with one family of one individual whose
fitness is drawn from the distribution Q

> at time t assume there exist M(t) families, and there are Z,(t)
individuals of fitness F, in the n-th family, for 1 < n < M(t)
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Branching processes with reinforcement

Definition (Dereich, Mailler and Morters, 2017)

> the process starts with one family of one individual whose
fitness is drawn from the distribution @
> at time t assume there exist M(t) families, and there are Z,(t)
individuals of fitness F, in the n-th family, for 1 < n < M(t)
> independently, every individual gives birth with a rate equal to
its fitness,
> or equivalently, in the n-th family birth events occur with a
time-dependent rate F,Z,(t)
> when a birth even occurs in the n-th family,

> with probability 8 a new family is founded, initially consisting
of one individual with a fitness drawn from @

> with probability v a new individual with fitness F, is added to
the n-th family

here we require S+~ >1
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Kingman's model as a special case

» individuals give birth to new individuals with a rate equal to
their fitnesses
> with probability 5 the new individual is a mutant with fitness
drawn from
> with probability 1 — 3 the new individual is not a mutant, then
it inherits the fitness of its parent
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Kingman's model as a special case

» individuals give birth to new individuals with a rate equal to
their fitnesses
> with probability 5 the new individual is a mutant with fitness
drawn from
> with probability 1 — 3 the new individual is not a mutant, then
it inherits the fitness of its parent

This model corresponds to 8+ =1 in the general model
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Preferential attachment model as a special case

Recall:
> it starts with one vertex with fitness drawn from @
> at each time step, a new vertex is introduced, equipped with a
fitness drawn from Q
> the new vertex is linked to one of the present vertices with
probability proportional to its fitness x its degree
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Preferential attachment model as a special case

Recall:
> it starts with one vertex with fitness drawn from @

> at each time step, a new vertex is introduced, equipped with a
fitness drawn from Q

> the new vertex is linked to one of the present vertices with
probability proportional to its fitness x its degree

It corresponds to 5=+ =1 in the general model
> family = vertex, family size = its degree
» at a birth event, a new family is founded
> i.e., a new vertex is introduced

> at the same time, the family that gave birth increases its size
by 1

> i.e., the degree of the selected vertex increases by 1

32/44



It is a Crump-Mode-Jagers process

The branching process with reinforcement is in fact a
Crump-Mode-Jagers branching process
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It is a Crump-Mode-Jagers process

The branching process with reinforcement is in fact a
Crump-Mode-Jagers branching process

A typical family
» born with one individual equipped with fitness F drawn from
Q which is supported on (0,1) with Q(x,1) >0,Vx € (0,1)
» the family size process (Y (t))¢>0 grows as a Yule process with
rate vF

> Given (F,Y), the birth times of mutant offspring from this
family is an inhomogeneous Poisson process (IN(t)):s0 with
intensity measure

%wuﬂ(l—y)w(t)dt

A tyical family is characterised by (F,Y,IT)

33/44



More notations

Let (¢(t))¢s0 be the cadlag process taking values in Ny that
assigns a score to a family t time units after its foundation. It is a
function of (F,Y,I)
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More notations

Let (¢(t))¢s0 be the cadlag process taking values in Ny that
assigns a score to a family t time units after its foundation. It is a
function of (F,Y,I)

The n-th family is characterised by (Fp, Yy, M,,¢n). Let 7, be the
birth time of the n-th family

Define
Z¢(t): Z ¢n(t_7—n)

nTp<t

Reference: Nerman 1981
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Convergence and condensation

Lemma
The following two statements are equivalent and the resulting \*
are the same

> there exists an \* >y, called the Malthusian exponent, such
that -~
/0 e VSE[N(ds)] = 1
» (i=1- %fol 17 Q(dx) <0 and \* is the unique solution of

X

1
b 0 )\*—'yXQ(dX)Zl
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Convergence and condensation
Define the empirical distribution

_ 1 MO
—t =
N(t) n=1
here N(t) is the total number of individuals

Zn(t)(SFn
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Convergence and condensation
Define the empirical distribution

M(t)

1
== — Zn(t)d
TN & LR

here N(t) is the total number of individuals
Theorem
Assume ¢ satisfies some conditions.

If <0 (no condensation), then there exists a positive random
variable W, not depending on ¢ such that

B etk (105
t fo te"\"tE[M(dt)]

t—o00

Thus, =¢ - 7 almost surely weekly with 7(dx) = ﬁ/\*fvx Q(dx)

/fCN >0 (condensation), then = — 7 almost surely weakly where

X

m(dx) = ETQ(dX) + (0
v1-x
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Other results

If Q(1-h,1)=h"l(h) with o >1 and ¢(h) slowly varying, then we
are in the condensation regime
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Other results

If Q(1-h,1)=h"l(h) with o >1 and ¢(h) slowly varying, then we
are in the condensation regime

Moreover,
maxnZn(t)
LGRS

> the largest families are born around T(t) = 3% log t (if there is
condensation, then\* = ; otherwise \* > )

> t - oo

> the largest families at time t have fitness 1 — ¢/t and size of
order 7(t=T(1))

37/44



Condensation scenarios

Terminology from Berg, Lewis and Pulé (1986)
» Macroscopic occupation of the ground state: the proportion
of individuals in the largest family is asymptotically positive
> Non-extensive condensation: no single family makes an
asymptotically positive contribution. The condensation is a
collective efforts of a growing number of families
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Further questions

» does the condensation wave behave like Gamma function?
> what if fitness can be arbitrarily large?

» can we compute the genealogy and see if there is any
connection between the genealogy and the condensation?

39/44
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Random permutaion model

It is tightly connected to the Bose-Einstein condensation for Boson
gas, see Betz and Ueltschi (2009, 2011)
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Random permutaion model
It is tightly connected to the Bose-Einstein condensation for Boson
gas, see Betz and Ueltschi (2009, 2011)
Definition
The probability of a permutation 7 of {1,2,...,n} is defined as

[Tj21 ejj(w)

Pn(m) = h,n!

where
» ri(m) is the number of cycles of length j
» 0; >0 is the weight for the cycle of length j

» h, is a normalisation
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Random permutaion model
It is tightly connected to the Bose-Einstein condensation for Boson
gas, see Betz and Ueltschi (2009, 2011)
Definition
The probability of a permutation 7 of {1,2,...,n} is defined as

[Tj21 ejj(w)

Pn(m) = h,n!

where
» ri(m) is the number of cycles of length j
» 0; >0 is the weight for the cycle of length j
» h, is a normalisation
Remarks
1. If 6; = 0 for all j, this is the Ewens sampling formula

2. This is a problem of allocating distinguishable balls in
indistinguishable boxes
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Main results

> assume 0 = j*4(j) for a > 0 and ¢ slowly varying.
> let B, =1 0; and B (t) = min{n: B, > t}
> define the empirical cycle length distribution

n i1 p=(m)

where A1 > Ao > --- are ordered cycle lengths of a random
permutation
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i>1 p=(m

where A1 > Ao > --- are ordered cycle lengths of a random
permutation

Then ) 1
lim p,[0,x] = (74_1)[0 yoe Ty g,
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Conclusions

many models exhibit condensation phenomena with universal
characteristics

finer properties of condensation are still missing:

>
>
>

>

new

dominant players

condensation /travelling wave
random environment
genealogy vs condensation, etc

and more general models to explore (achieving different

condensation scenarios)

43 /44



Thank you for your attention!
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