Local convergence analysis of augmented Lagrangian method for nonlinear semidefinite programming

丁超 应用数学研究所 中国科学院数学与系统科学研究院

中国运筹学会数学规划分会第十三届数学优化大会会议, 青岛 2021年10月18日

Based on the joint work with Shiwei Wang @ Institute of Applied Mathematics, AMSS

S.W. Wang and D., Local convergence analysis of augmented Lagrangian method for nonlinear semidefinite programming, arXiv: 2110.10594, 2021.

Augmented Lagrangian method

Convergence analysis for ALM

Main results

Augmented Lagrangian method

Augmented Lagrangian function

Consider

$$\begin{array}{ll} \min_{x \in \mathbb{X}} & \Phi(x) \\ \text{s.t.} & h(x) = 0 & \leftarrow & y \end{array}$$

Augmented Lagrangian function

Consider

$$\begin{array}{ll} \min_{x \in \mathbb{X}} & \Phi(x) \\ \text{s.t.} & h(x) = 0 & \leftarrow & y \end{array}$$

Augmented Lagrangian function¹:

$$L_{\sigma}(x;y) := \Phi(x) + \langle y, h(x) \rangle + \frac{\sigma}{2} \|h(x)\|^2$$

where $\sigma > 0$

¹Arrow, K.J., Solow, R.M.: Gradient methods for constrained maxima with weakened assumptions. In: Arrow, K.J., Hurwicz, L., Uzawa, H., (eds.) Studies in Linear and Nonlinear Programming. Stanford University Press, Stanford, pp. 165-176 (1958)

K. Arrow and R. Solow

Kenneth Joseph "Ken" Arrow (23 August 1921 – 21 February 2017)

John Bates Clark Medal (1957); Nobel Prize in Economics (1972); von Neumann Theory Prize (1986); National Medal of Science (2004); ForMemRS (2006)

Robert Merton Solow (August 23, 1924 –)

John Bates Clark Medal (1961); Nobel Memorial Prize in Economic Sciences (1987); National Medal of Science (1999); Presidential Medal of Freedom (2014); ForMemRS (2006) ALM (Hestenes, 69'; Powell, 69'):

$$\begin{cases} x^{k+1} \approx \operatorname{argmin}\left\{L_{\sigma}(x; y^{k})\right\}\\ y^{k+1} = y^{k} + \sigma h(x^{k+1}) \end{cases}$$

²a.k.a. the method of multipliers

ALM (Hestenes, 69'; Powell, 69'):

$$\begin{cases} x^{k+1} \approx \operatorname{argmin} \left\{ L_{\sigma}(x; y^k) \right\} \\ y^{k+1} = y^k + \sigma h(x^{k+1}) \end{cases}$$

Magnus Rudolph Hestenes (February 13 1906 – May 31 1991)

Michael James David Powell (29 July 1936 – 19 April 2015)

²a.k.a. the method of multipliers

ALMs in practice

Source: Cui, Sun and Toh, MP 19'3

³Y. Cui, D.F. Sun, K.C. Toh, "On the R-superlinear convergence of the KKT residuals generated by the augmented Lagrangian method for convex composite conic programming", Mathematical Programming 178 (2019) 381–415

Roughly speaking, $x^k \to x^\infty$ linearly with a rate bounded from above by

$$rac{\kappa_p}{\sqrt{\kappa_p^2+\sigma_\infty^2}} < 1$$
 (fast linear)

Roughly speaking, $x^k \to x^\infty$ linearly with a rate bounded from above by

$$\frac{\kappa_p}{\sqrt{\kappa_p^2 + \sigma_\infty^2}} < 1 \quad \text{(fast linear)} \quad (\text{CG}: \frac{\sqrt{\kappa_p} - 1}{\sqrt{\kappa_p} + 1} \approx 1)$$

Roughly speaking, $x^k \to x^\infty$ linearly with a rate bounded from above by

$$\frac{\kappa_p}{\sqrt{\kappa_p^2 + \sigma_\infty^2}} < 1 \quad \text{(fast linear)} \quad (\text{CG}: \frac{\sqrt{\kappa_p} - 1}{\sqrt{\kappa_p} + 1} \approx 1)$$

Powell, 69'⁴: ALM \iff Approximate Newton method

⁴M.J.D. Powell. A method for nonlinear constraints in minimization problems. in *Optimization*, R. Fletcher, ed., Academic Press, New York, 1969, pp. 283–298

Roughly speaking, $x^k \to x^\infty$ linearly with a rate bounded from above by

$$\frac{\kappa_p}{\sqrt{\kappa_p^2 + \sigma_\infty^2}} < 1 \quad \text{(fast linear)} \quad (\text{CG}: \frac{\sqrt{\kappa_p} - 1}{\sqrt{\kappa_p} + 1} \approx 1)$$

Powell, 69'⁴: ALM \iff Approximate Newton method

⁴M.J.D. Powell. A method for nonlinear constraints in minimization problems. in *Optimization*, R. Fletcher, ed., Academic Press, New York, 1969, pp. 283–298

Roughly speaking, $x^k \to x^\infty$ linearly with a rate bounded from above by

$$\frac{\kappa_p}{\sqrt{\kappa_p^2 + \sigma_\infty^2}} < 1 \quad \text{(fast linear)} \quad (\text{CG}: \frac{\sqrt{\kappa_p} - 1}{\sqrt{\kappa_p} + 1} \approx 1)$$

Powell, 69'⁴: ALM \iff Approximate Newton method

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \phi(x) = 0 \end{array} \quad \quad \mathsf{ALM}: \quad \left\{ \begin{array}{l} x(y,\sigma) = \operatorname{argmin}_x \, L_{\sigma}(x;y) \\ y \leftarrow y + \phi(x(y,\sigma)) \end{array} \right.$$

Newton method for $\Psi(y) := \phi(x(y, \sigma)) = 0$:

$$y \leftarrow y - J\Psi(y)^{-1}\Psi(y) = y - J\Psi(y)^{-1}\phi(x(y,\sigma))$$

⁴M.J.D. Powell. A method for nonlinear constraints in minimization problems. in *Optimization*, R. Fletcher, ed., Academic Press, New York, 1969, pp. 283–298

Roughly speaking, $x^k \to x^\infty$ linearly with a rate bounded from above by

$$\frac{\kappa_p}{\sqrt{\kappa_p^2 + \sigma_\infty^2}} < 1 \quad \text{(fast linear)} \quad (\text{CG}: \frac{\sqrt{\kappa_p} - 1}{\sqrt{\kappa_p} + 1} \approx 1)$$

Powell, 69'⁴: ALM \iff Approximate Newton method

$$\begin{array}{ll} \min & f(x) \\ \text{s.t.} & \phi(x) = 0 \end{array} \quad \quad \mathsf{ALM}: \quad \left\{ \begin{array}{l} x(y,\sigma) = \operatorname{argmin}_x \, L_\sigma(x;y) \\ y \leftarrow y + \phi(x(y,\sigma)) \end{array} \right.$$

Newton method for $\Psi(y) := \phi(x(y, \sigma)) = 0$:

$$y \leftarrow y - J\Psi(y)^{-1}\Psi(y) = y - J\Psi(y)^{-1}\phi(x(y,\sigma))$$

Powell, 69' shows that the Jacobian of Ψ satisfies

$$\|-J\Psi - I\| = O(\frac{1}{\sigma - c})$$

⁴M.J.D. Powell. A method for nonlinear constraints in minimization problems. in *Optimization*, R. Fletcher, ed., Academic Press, New York, 1969, pp. 283–298

Convergence analysis for ALM

Convex OPs:

• Rockafellar, 76':

Dual upper Lipschitz continuity + dual boundedness + stopping criteria

 \implies dual Q-linear

Convex OPs:

• Rockafellar, 76':

Dual upper Lipschitz continuity + dual boundedness + stopping criteria

 \implies dual Q-linear

• Luque, 84':

An error bound condition + stopping criteria \implies dual Q-linear

Convex OPs:

• Rockafellar, 76':

Dual upper Lipschitz continuity + dual boundedness + stopping criteria

 \implies dual Q-linear

• Luque, 84':

An error bound condition + stopping criteria \implies dual Q-linear

• Cui, Sun and Toh, MP 19':

Dual calmness + stopping criteria

 \implies dual Q-(asymptotically super-)linear

+ KKT residual R-(asymptotically super-)linear

Convex OPs:

• Rockafellar, 76':

Dual upper Lipschitz continuity + dual boundedness + stopping criteria

 \implies dual Q-linear

• Luque, 84':

An error bound condition + stopping criteria \implies dual Q-linear

• Cui, Sun and Toh, MP 19':

Dual calmness + stopping criteria

 \implies dual Q-(asymptotically super-)linear

+ KKT residual R-(asymptotically super-)linear

Key fact: the strong connection with dual PPA

NLP (non-convex):

• cf. e.g., Bertsekas, 82'; Nocedal and Wright, 06':

 $SOSC + LICQ + strict complementarity \implies primal R-linear+dual Q-linear$

NLP (non-convex):

• cf. e.g., Bertsekas, 82'; Nocedal and Wright, 06':

 $SOSC + LICQ + strict complementarity \implies primal R-linear+dual Q-linear$

• Conn, Gould and Toint, 91'; Contesse-Becker 93'; Ito & Kunisch 91':

SOSC + **LICQ** \implies primal *R*-linear + dual *Q*-linear

NLP (non-convex):

• cf. e.g., Bertsekas, 82'; Nocedal and Wright, 06':

 $SOSC + LICQ + strict complementarity \implies primal R-linear+dual Q-linear$

• Conn, Gould and Toint, 91'; Contesse-Becker 93'; Ito & Kunisch 91':

SOSC + **LICQ** \implies primal *R*-linear + dual *Q*-linear

• Fernández and Solodov, SIOPT 12':

SOSC + initial multiplier sufficiently close \implies primal-dual linear

Key fact: For NLP, automatically,

SOSC \implies a primal-dual error bound (Hoffman's error bound)

Non-polyhedral & non-convex:

• NLSDP (Sun, Sun and Zhang, MP 08'):

strong SOSC + LICQ + initial sufficiently close \implies primal-dual linear

Non-polyhedral & non-convex:

• NLSDP (Sun, Sun and Zhang, MP 08'):

strong SOSC + LICQ + initial sufficiently close \implies primal-dual linear

• C^2 -cone reducible problems (Kanzow and Steck, MP 18'):

 $SOSC + SRCQ \implies$ primal-dual linear

Key fact: (D., Sun and Zhang, SIOPT 17')

 $\mathsf{SOSC} + \mathsf{SRCQ} \iff \mathsf{robust} \text{ isolated calmness}$

Non-polyhedral & non-convex:

• NLSDP (Sun, Sun and Zhang, MP 08'):

strong SOSC + LICQ + initial sufficiently close \implies primal-dual linear

• C²-cone reducible problems (Kanzow and Steck, MP 18'):

 $SOSC + SRCQ \implies$ primal-dual linear

Key fact: (D., Sun and Zhang, SIOPT 17')

 $\mathsf{SOSC} + \mathsf{SRCQ} \iff \mathsf{robust} \text{ isolated calmness}$

For non-convex and non-polyhedral cases (MOPs),

- all results are obtained under the solution uniqueness assumption
- unlike the polyhedral case (NLPs), Hoffman's error bound does not hold in general

• Piecewise linear quadratic (Hang & Sarabi, SIOPT 21'):

```
SOSC + initial multiplier sufficiently close \implies primal-dual linear
```

• Piecewise linear quadratic (Hang & Sarabi, SIOPT 21'):

SOSC + initial multiplier sufficiently close \implies primal-dual linear

• Second order cone (SOC) (Hang, Mordukhovich and Sarabi, J. Global Opt. 21'):

 $\begin{aligned} & \mathsf{SOSC} + \mathsf{semi-isolated \ calm} + \mathsf{initial \ sufficiently \ close} \\ & + \mathsf{multiplier \ unique} \Longrightarrow \mathsf{primal-dual \ linear} \end{aligned}$

• Piecewise linear quadratic (Hang & Sarabi, SIOPT 21'):

 $SOSC + initial multiplier sufficiently close \implies$ primal-dual linear

• Second order cone (SOC) (Hang, Mordukhovich and Sarabi, J. Global Opt. 21'):

 $\begin{array}{l} {\sf SOSC} + {\sf semi-isolated \ calm} + {\sf initial \ sufficiently \ close} \\ + {\sf multiplier \ unique} \Longrightarrow {\sf primal-dual \ linear} \end{array}$

 Fully amenable (Rockafellar, MP 21'): Piecewise linear quadratic & SOC strong variational sufficiency ⇒ primal *R*-linear + dual *Q*-linear Main results

Local convergence analysis of ALM for NLSDP

NLSDP:

min
$$f(x)$$

s.t. $h(x) = 0, \leftarrow y$
 $G(x) \in \mathcal{S}^n_+, \leftarrow \Gamma$

Let $\lambda = (y, \Gamma)$, $\Phi(x) = (h(x), G(x))$ and $\mathcal{K} = \{0\} \times \mathcal{S}^n_+$.

Augmented Lagrangian function:

$$\mathcal{L}(x,\lambda,\rho) := f(x) + \frac{\rho}{2} \text{dist}^2(\Phi(x) + \frac{\lambda}{\rho},\mathcal{K}) - \frac{\|\lambda\|^2}{2\rho}$$

KKT:

$$S_{KKT}(a_1, a_2, b) = \begin{cases} \nabla_x L(x, y, \Gamma) - a_1 = 0, \\ (x, y, \Gamma) \in \mathcal{X} \times \Re^e \times \mathcal{S}^n : \quad h(x) - a_2 = 0, \\ 0 \preceq (G(x) - b) \perp \Gamma \preceq 0. \end{cases}$$

For a stationary point \bar{x} , the set of multipliers satisfying KKT system: $\mathcal{M}(\bar{x}) = \{(y, \Gamma) \in \Re^e \times \mathcal{S}^n \mid (\bar{x}, y, \Gamma) \in S_{\mathrm{KKT}}(0, 0, 0)\}.$

Algorithm 1

Input: Let $(x^0, \lambda^0) \in \mathcal{X} \times \mathcal{H}$, $\rho_0 > 0$, $\varsigma > 1$, $\xi \in (0, 1)$, $\{\epsilon_k\}_{k \ge 0}$ with $\epsilon_k > 0$ for all k and $\epsilon_k \to 0$ and set k := 0.

- **Output:** x, λ
- 1: If (x^k, λ^k) satisfies a suitable termination criterion: STOP.
- 2: Compute $x^{k+1} \approx \operatorname{argmin}\{\mathcal{L}(x,\lambda^k,\rho^k)\}$ such that $\|\nabla_x \mathcal{L}(\cdot,\lambda^k,\rho^k)\| \leq \epsilon_k$.
- 3: Update the vector of multipliers to

$$\lambda^{k+1} := \rho^k \left[\Phi(x^{k+1}) + \frac{\lambda^k}{\rho^k} - \Pi_{\mathcal{K}}(\Phi(x^{k+1}) + \frac{\lambda^k}{\rho^k}) \right].$$

Update ρ^{k+1} by $\rho^{k+1} = \rho^k$ or $\rho^{k+1} = \varsigma \rho^k$ according to certain rules. 4: Set $k \leftarrow k+1$ and go to **Step 1**.

An assumption

Assumption

For all $\lambda = (y, \Gamma) \notin \mathcal{M}(\bar{x})$ sufficiently close to $\bar{\lambda} \in \operatorname{rbd} \mathcal{M}(\bar{x})$ and x sufficiently close to \bar{x} , there also exists $\hat{\lambda} \in \mathcal{M}(\bar{x})$ with $\pi(\widehat{\Gamma}) = \pi(\overline{\Gamma})$ such that

$$\|\Pi_{\mathcal{M}(\bar{x})}(\lambda) - \widehat{\lambda}\| = O(R(x,\lambda)),$$

where $R(x,\lambda)$ is the residual function defined by

 $R(x,\lambda) = \|\nabla_x L(x,\lambda)\| + \|\Phi(x) - \Pi_{\mathcal{K}}(\Phi(x) + \lambda)\|.$

An assumption (cont'd)

Main result

Theorem

Let $\bar{x} \in \mathcal{X}$ be a stationary point to NLSDP and $\bar{\lambda} \in \mathcal{M}(\bar{x})$. Suppose SOSC holds at $(\bar{x}, \bar{\lambda})$ and semi-isolated calmness of S_{KKT} holds at $(0, (\bar{x}, \bar{\lambda}))$.

(i) If λ̄ ∈ ri M(x̄), then there exist positive constants r̄, ζ̄, ρ̄ such that for any starting point (x⁰, λ⁰) ∈ B_τ(x̄, λ̄) the {(x^k, λ^k)}_{k≥0} generated by ALM with ρ^k ≥ ρ̄ and ε_k = o(R(x^k, λ^k)) for all k satisfies

$$\|x^{k+1} - x^k\| + \|\lambda^{k+1} - \lambda^k\| \le \overline{\zeta}R(x^k, \lambda^k).$$

(ii) If λ̄ ∈ rbd M(x̄) and Assumption holds, then there exist positive constants r̄, ζ̄, φ̄ such that for any starting point (x⁰, λ⁰) ∈ B_τ(x̄, λ̄) the {(x^k, λ^k)}_{k≥0} generated by ALM with ρ^k ≥ φ̄ and ε_k = o(R(x^k, λ^k)) and λ^k ∉ M(x̄) for all k also satisfies the above inequality.

Moreover, for each case, the sequence is convergent to $(\bar{x}, \hat{\lambda})$ for some $\hat{\lambda} \in \mathcal{M}(\bar{x})$ and its rate of convergence is linear, i.e., for k sufficiently large,

$$\|(x^{k+1},\lambda^{k+1}) - (\bar{x},\widehat{\lambda})\| \le \tau^k \|(x^k,\lambda^k) - (\bar{x},\widehat{\lambda})\|,$$

where $\tau^k = 2\sqrt{2\zeta}\kappa_1\kappa_2^2(R_k^{-1}\epsilon_k + (\rho^k)^{-1}\overline{\zeta}).$

Spectral operators: a class of matrix-valued functions defined on the spectral. (**D.** PhD thesis; **D.**, et. al, **MP** 18' and **SIOPT** 20')

For instance, the metric projection operator $\Pi_{\mathcal{S}^n_+}(\cdot): \mathcal{S}^n \to \mathcal{S}^n$ over \mathcal{S}^n_+ :

$$\Pi_{\mathcal{S}^n_+}(X) = P \begin{bmatrix} (\lambda_1(X))_+ & 0 & 0\\ \vdots & \ddots & \vdots\\ 0 & 0 & (\lambda_n(X))_+ \end{bmatrix} P^T, \quad X \in \mathcal{S}^n,$$

where $\lambda_1(X) \ge \ldots \ge \lambda_n(X)$ are eigenvalues and P is the corresponding eigenvector matrix, i.e.,

$$X = P \begin{bmatrix} \lambda_1(X) & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \lambda_n(X) \end{bmatrix} P^T.$$

Spectral operators: a class of matrix-valued functions defined on the spectral. (**D.** PhD thesis; **D.**, et. al, **MP** 18' and **SIOPT** 20')

For instance, the metric projection operator $\Pi_{\mathcal{S}^n_+}(\cdot): \mathcal{S}^n \to \mathcal{S}^n$ over \mathcal{S}^n_+ :

$$\Pi_{\mathcal{S}^n_+}(X) = P \begin{bmatrix} (\lambda_1(X))_+ & 0 & 0\\ \vdots & \ddots & \vdots\\ 0 & 0 & (\lambda_n(X))_+ \end{bmatrix} P^T, \quad X \in \mathcal{S}^n,$$

where $\lambda_1(X) \ge \ldots \ge \lambda_n(X)$ are eigenvalues and P is the corresponding eigenvector matrix, i.e.,

$$X = P \begin{bmatrix} \lambda_1(X) & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \lambda_n(X) \end{bmatrix} P^T.$$

Let $\pi(X) := \bigcup_{i=1}^{d} \alpha^{l}(X)$ be the partition of eigenvalues $\lambda(X)$ with $\alpha^{l}(X) := \{i : \lambda_{i}(X) = v_{i}(X)\}$, where $v_{1}(X) > \cdots > v_{d}(X)$ are different eigenvalues of X.

A refined perturbation analysis of eigenvalue decompositions

Given a fixed $\overline{A} \in S^n$. Let $0 < r < \min_{i < j} \{v_i(\overline{A}) - v_j(\overline{A})\}/3$. For any $H \in S^n$ and $A \in \mathbb{B}_r(\overline{A})$, let U be an orthogonal matrix such that $U^T(\Lambda(A) + H)U = \Lambda(\Lambda(A) + H)$.

Lemma

Then, for any $H \rightarrow 0$, we have

$$\begin{cases} U_{\bar{\alpha}_k\bar{\alpha}_l} = O(||H||), & k, l = 1, \cdots, \bar{d}, k \neq l \\ U_{\bar{\alpha}_k\bar{\alpha}_k} U_{\bar{\alpha}_k\bar{\alpha}_k}^T = I_{|\bar{\alpha}_k|} + O(||H||^2), & k = 1, \cdots, \bar{d} \end{cases}$$

Furthermore, for each $k \in \{1, ..., \overline{d}\}$, there exists $Q_k \in \mathcal{O}^{|\overline{\alpha}_k|}$ such that

$$U_{\bar{\alpha}_k\bar{\alpha}_k} = Q_k + O(\|H\|^2)$$

and

$$Q_k^T H_{\bar{\alpha}_k \bar{\alpha}_k} Q_k = \Lambda_{\bar{\alpha}_k \bar{\alpha}_k} (\Lambda(X) + H) - Q_k^T \Lambda(A)_{\bar{\alpha}_k \bar{\alpha}_k} Q_k + O(||H||^2).$$

The O(||H||) and $O(||H||^2)$ above are uniform for all $A \in \mathbb{B}_r(\overline{A})$.

Given $\overline{A} \in S^n$ and let $0 < r < \min_{i < j} \{v_i(\overline{A}) - v_j(\overline{A})\}/3$. For any $H \in S^n$ and $A \in \mathbb{B}_r(\overline{A})$, let U be an orthogonal matrix such that

$$U^{T}(A+H)U = \Lambda(A+H).$$

Lemma

For all $l \in \{1, ..., \bar{d}\}$, there exist $Q_l \in \mathcal{O}^{|\bar{\alpha}^l|}$ (depends on H) such that for all $H \to 0$,

$$(P^T U)_{\bar{\alpha}_k \bar{\alpha}_l} = \Theta_{kl} \circ (\widetilde{H}_{\bar{\alpha}_k \bar{\alpha}_l} Q_l) + O(||H||^2), \quad k \neq l$$

where $O(||H||^2)$ is uniform for all $A \in \mathbb{B}_r(\overline{A})$, $(\Theta_{kl})_{ij} = 1/((\Lambda(A)_{\bar{\alpha}_l\bar{\alpha}_l})_{ii} - (\Lambda(A)_{\bar{\alpha}_k\bar{\alpha}_k})_{jj})$ and $\widetilde{H} = P^T H P$, $P \in \mathcal{O}^n(A)$.

Proposition

Let $\overline{A} \in S^n$ be given. The metric projection operator $\Pi_{\mathbb{S}^n_+}(\cdot)$ over \mathbb{S}^n_+ is uniformly B-differentiable of order 2 for any $A \in \mathbb{B}_r(\overline{A})$ with $\pi(\overline{A}) = \pi(A)$, *i.e.*, for $S^n \ni H \to 0$,

$$\Pi_{\mathcal{S}^{n}_{+}}(A+H) - \Pi_{\mathcal{S}^{n}_{+}}(A) - \Pi'_{\mathcal{S}^{n}_{+}}(A;H) = O\left(\|H\|^{2}\right)$$

and $O(||H||^2)$ is uniform for all $A \in \mathbb{B}_r(\overline{A})$ with $\pi(\overline{A}) = \pi(A)$.

 \star In literature, we only know that $\Pi_{\mathcal{S}^n_+}(\cdot)$ is B-differentiable of order 2 (D., et al, MP 14').

Proposition

Let $\overline{A} \in S^n$ be given. For any $A \in \mathbb{B}_r(\overline{A})$ with $\pi(A) = \pi(\overline{A})$, we have for all $H \to 0$,

$$e\delta_{\mathcal{S}^n_+}(A+H) - e\delta_{\mathcal{S}^n_+}(A) = \langle \Pi_{\mathcal{S}^n_-}(A), H \rangle + \frac{1}{2}e\big(\mathrm{d}^2\delta_{\mathcal{S}^n_+}(G(\bar{x}), \Gamma)\big)(H) + O(\|H\|^3),$$

where $O(||H||^3)$ is uniform for all $A \in \mathbb{B}_r(\overline{A})$ with $\pi(A) = \pi(\overline{A})$ and $d^2 \delta_{S^n_+}(G(\overline{x}), \Gamma)$.

- $\pi(A) = \pi(\overline{A})$ means $\alpha_l(A) = \alpha_l(\overline{A})$ for all $k = 1, \dots, d$
- (Poliquin & Rockafellar , SIOPT 96') generated the non-uniform version of $o(\|H\|^2)$

Theorem

Let $\bar{x} \in \mathcal{X}$ be a locally optimal solution to the NLSDP and $\bar{\lambda} \in \mathcal{M}(\bar{x})$.

(i) If λ̄ ∈ ri M(x̄), then the SOSC holds at (x̄, λ̄) if and only if there are positive constants ρ₃, γ, ε, l such that for all λ ∈ M(x̄) ∩ B_ε(λ̄) and all ρ ≥ ρ₃ the uniform quadratic growth condition

$$\mathcal{L}(x,\lambda,\rho) \ge f(\bar{x}) + l \|x - \bar{x}\|^2 \quad \text{for all } x \in \mathbb{B}_{\gamma}(\bar{x}) \tag{1}$$

is satisfied.

(ii) If λ̄ ∈ rbd M(x̄), then the SOSC holds at (x̄, λ̄) if and only if there are positive constants ρ₃, γ, ε, l such that (1) holds uniformly for all ρ ≥ ρ₃ and all λ ∈ M(x̄) ∩ B_ε(λ̄) with π(Γ) = π(Γ̄).

Theorem

Let $\bar{x} \in \mathcal{X}$ be a locally optimal solution to the NLSDP and $\bar{\lambda} \in \mathcal{M}(\bar{x})$.

(i) If λ̄ ∈ ri M(x̄), then the SOSC holds at (x̄, λ̄) if and only if there are positive constants ρ₃, γ, ε, l such that for all λ ∈ M(x̄) ∩ B_ε(λ̄) and all ρ ≥ ρ₃ the uniform quadratic growth condition

$$\mathcal{L}(x,\lambda,\rho) \ge f(\bar{x}) + l \|x - \bar{x}\|^2 \quad \text{for all } x \in \mathbb{B}_{\gamma}(\bar{x}) \tag{1}$$

is satisfied.

- (ii) If λ̄ ∈ rbd M(x̄), then the SOSC holds at (x̄, λ̄) if and only if there are positive constants ρ₃, γ, ε, l such that (1) holds uniformly for all ρ ≥ ρ₃ and all λ ∈ M(x̄) ∩ B_ε(λ̄) with π(Γ) = π(Γ̄).
 - While in polyhedral case, uniform quadratic growth condition can be get directly from SOSC

Comparison: Rockafellar's variational sufficiency

Consider a general parametrical optimization

 $\min \varphi(x, u) \quad \text{s.t. } u = 0,$

where u is a perturbation parameter. Let $\varphi_\rho(x,u)=\varphi(x,u)+\frac{\rho}{2}|u|^2.$

Consider a general parametrical optimization

 $\min \varphi(x, u) \quad \text{s.t. } u = 0,$

where u is a perturbation parameter. Let $\varphi_{\rho}(x, u) = \varphi(x, u) + \frac{\rho}{2}|u|^2$.

Definition (Rockafellar, MP 21' ⁵)

The (strongly) variational sufficiency for local optimality holds with respect to $(\bar{x}, \bar{y}) \in gph \partial \varphi_{\rho}$ satisfying the first-order condition if there exists $\rho > 0$ such that is variationally (strongly) convex with respect to $((\bar{x}, 0), (0, \bar{y}))$ in $gph \partial \varphi_{\rho}$, i.e., there exist open convex neighborhoods \mathcal{W} of $(\bar{x}, 0)$ and \mathcal{Z} of $(0, \bar{y})$ such that

there exists a proper lsc (strongly) convex function $\psi \leq \varphi_{\rho}$ on \mathcal{W} such that

$$[\mathcal{W} \times \mathcal{Z}) \cap \operatorname{gph} \partial \psi = [\mathcal{W} \times \mathcal{Z}) \cap \operatorname{gph} \partial \varphi_{\rho}$$

and, for (x, u; v, y) belonging to this common set, $\psi(x, u) = \varphi_{\rho}(x, u)$.

⁵R.T. Rockafellar. Augmented Lagrangians and hidden convexity in sufficient conditions for local optimality. in *Math. Programming*, to appear.

Theorem (Rockafellar, MP 21')

With respect to \bar{x} and \bar{y} satisfying the first-order optimality condition, the variational sufficiency for local optimality holds if and only if, for $\rho > 0$ sufficiently large, there is a closed convex neighborhood $\mathcal{X} \times \mathcal{Y}$ of (\bar{x}, \bar{y}) such that $\mathcal{L}(x, y, \rho)$ is convex in $x \in \mathcal{X}$ when $y \in \mathcal{Y}$ as well as concave $y \in \mathcal{Y}$ when $x \in \mathcal{X}$.

Theorem (Rockafellar, MP 21')

With respect to \bar{x} and \bar{y} satisfying the first-order optimality condition, the variational sufficiency for local optimality holds if and only if, for $\rho > 0$ sufficiently large, there is a closed convex neighborhood $\mathcal{X} \times \mathcal{Y}$ of (\bar{x}, \bar{y}) such that $\mathcal{L}(x, y, \rho)$ is convex in $x \in \mathcal{X}$ when $y \in \mathcal{Y}$ as well as concave $y \in \mathcal{Y}$ when $x \in \mathcal{X}$.

Theorem (Rockafellar, MP 21')

The strongly variational sufficiency for local optimality implies augmented tilt stability. It corresponds equally to having the functions $\mathcal{L}(\cdot, y, \rho)$ on \mathcal{X} for $y \in \mathcal{Y}$ be strongly convex, all with the same modulus of strong convexity.

Both may fail easily even under SOSC!

The proof is in the pudding

Proposition

Let $(\bar{x}, \bar{\lambda})$ be a KKT point satisfying SOSC. Define

$$S_{\rho}(\lambda) = \arg\min\{\mathcal{L}(x,\lambda,\rho) \mid x \in \mathbb{B}_{\widehat{r}}(\overline{x})\}.$$

Then there are positive constants τ , ρ_3 , $\hat{r} > 0$ such that for every $\rho \ge \rho_3$ and $\lambda \in \mathbb{B}_{\hat{r}/2\tau}(\bar{\lambda})$, the set $S_{\rho}(\lambda)$ satisfies the uniform isolated calmness property, i.e.,

$$\mathcal{S}_{\rho}(\lambda) \subseteq \{\bar{x}\} + \tau \|\lambda - \bar{\lambda}\|\mathbb{B}$$

and satisfies $\emptyset \neq S_{\rho}(\lambda) \subseteq \operatorname{int} \mathbb{B}_{\widehat{r}}(\overline{x}).$

Proposition

Let $(\bar{x}, \bar{\lambda})$ be a KKT point satisfying SOSC. Define

$$\mathcal{S}_{\rho}(\lambda) = \arg\min\{\mathcal{L}(x,\lambda,\rho) \mid x \in \mathbb{B}_{\widehat{r}}(\overline{x})\}.$$

Then there are positive constants τ , ρ_3 , $\hat{r} > 0$ such that for every $\rho \ge \rho_3$ and $\lambda \in \mathbb{B}_{\hat{r}/2\tau}(\bar{\lambda})$, the set $S_{\rho}(\lambda)$ satisfies the uniform isolated calmness property, *i.e.*,

 $\mathcal{S}_{\rho}(\lambda) \subseteq \{\bar{x}\} + \tau \|\lambda - \bar{\lambda}\|\mathbb{B}$

and satisfies $\emptyset \neq S_{\rho}(\lambda) \subseteq \operatorname{int} \mathbb{B}_{\widehat{r}}(\overline{x}).$

- (Sun at al., MP 08'): nondegeneracy + strong SOSC ⇒ Lipschitz continuity
- (Rockafellar, MP 21'): strongly variational sufficiency ⇒ augmented tilt stability
 ★ stronger than SOSC
 - fully amenable function
 works for NLP, NLSOC; but NLSDP is another kettle of fish

A refined perturbation analysis of eigenvalue decompositions

\Downarrow

Uniform second Expansion of Moreau envelop

↓

Uniform second Expansion of Moreau envelop

Uniform quadratic growth condition

subproblems

Definition

The semi-isolated clamness for the mapping S_{KKT} at $((0,0,0), (\bar{x}, \bar{y}, \overline{\Gamma}))$ holds if there exists $\kappa > 0$ and open neighborhoods \mathbb{V} of (0,0,0) and \mathbb{U} of $(\bar{x}, \bar{y}, \overline{\Gamma})$ such that for all $(x, y, \Gamma) \in S_{\text{KKT}}(a_1, a_2, b) \cap \mathbb{U}$,

 $\|x - \bar{x}\| + \operatorname{dist}((y, \Gamma), \mathcal{M}(\bar{x})) \le \kappa_1 \|(a_1, a_2, b)\|$

Theorem

Let $\bar{x} \in \mathcal{X}$ be a locally optimal solution to the NLSDP and $(\bar{y}, \overline{\Gamma}) \in \mathcal{M}(\bar{x})$. Suppose SOSC holds at $(\bar{x}, \bar{y}, \overline{\Gamma})$ and

 $\mathcal{G}_1(\bar{x}) \cap \operatorname{ri} \mathcal{G}_2(\bar{x}) \neq \emptyset,$

where $\mathcal{G}_1(\bar{x}) = \{(y,\Gamma) \in \mathcal{Y} \times \mathcal{S}^n \mid \nabla f(\bar{x}) + \nabla h(\bar{x})^* y + \nabla G(\bar{x})^* \Gamma = 0\}$ and $\mathcal{G}_2(\bar{x}) = \{(y,\Gamma) \in \mathcal{Y} \times \mathcal{S}^n \mid \Gamma \in \mathcal{N}_{\mathcal{S}^n_+}(G(\bar{x}))\}$. Then there exist a constant $\kappa_1 > 0$ and a neighborhood $\mathbb{U} := \mathbb{B}_{r_1}(\bar{x}, \bar{y}, \overline{\Gamma})$ of $(\bar{x}, \bar{y}, \overline{\Gamma})$ such that for any $(a_1, a_2, b) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{S}^n$,

 $||x - \bar{x}|| + \operatorname{dist}((y, \Gamma), \mathcal{M}(\bar{x})) \le \kappa_1 ||(a_1, a_2, b)|| \quad \forall (x, y, \Gamma) \in S_{\mathrm{KKT}}(a_1, a_2, b) \cap \mathbb{U}.$

Theorem

Let $\bar{x} \in \mathcal{X}$ be a locally optimal solution to the NLSDP and $(\bar{y}, \overline{\Gamma}) \in \mathcal{M}(\bar{x})$. Suppose SOSC holds at $(\bar{x}, \bar{y}, \overline{\Gamma})$ and

 $\mathcal{G}_1(\bar{x}) \cap \operatorname{ri} \mathcal{G}_2(\bar{x}) \neq \emptyset,$

where $\mathcal{G}_1(\bar{x}) = \{(y,\Gamma) \in \mathcal{Y} \times \mathcal{S}^n \mid \nabla f(\bar{x}) + \nabla h(\bar{x})^* y + \nabla G(\bar{x})^* \Gamma = 0\}$ and $\mathcal{G}_2(\bar{x}) = \{(y,\Gamma) \in \mathcal{Y} \times \mathcal{S}^n \mid \Gamma \in \mathcal{N}_{\mathcal{S}^n_+}(G(\bar{x}))\}$. Then there exist a constant $\kappa_1 > 0$ and a neighborhood $\mathbb{U} := \mathbb{B}_{r_1}(\bar{x}, \bar{y}, \overline{\Gamma})$ of $(\bar{x}, \bar{y}, \overline{\Gamma})$ such that for any $(a_1, a_2, b) \in \mathcal{X} \times \mathcal{Y} \times \mathcal{S}^n$,

 $\|x - \bar{x}\| + \operatorname{dist}((y, \Gamma), \mathcal{M}(\bar{x})) \le \kappa_1 \|(a_1, a_2, b)\| \quad \forall (x, y, \Gamma) \in S_{\mathrm{KKT}}(a_1, a_2, b) \cap \mathbb{U}.$

Other sufficient conditions:

- SOSC + SRCQ, reduced to isolated calmness
- SSOSC + nondegeneracy, reduced to strong regularity

Examples

Assumption: For all $\lambda = (y, \Gamma) \notin \mathcal{M}(\bar{x})$ sufficiently close to $\bar{\lambda} \in \operatorname{rbd} \mathcal{M}(\bar{x})$ and x sufficiently close to \bar{x} , there also exists $\hat{\lambda} \in \mathcal{M}(\bar{x})$ with $\pi(\widehat{\Gamma}) = \pi(\overline{\Gamma})$ such that

$$\|\Pi_{\mathcal{M}(\bar{x})}(\lambda) - \widehat{\lambda}\| = O(R(x,\lambda)).$$

Example 1:

$$\begin{array}{ll} \min & \frac{1}{2}x^3 \\ \text{s.t.} & -x^2 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in \mathcal{S}^3_+ \quad \Leftarrow \Gamma$$

The optimal solution is $\bar{x} = 0$ and $\mathcal{M}(\bar{x}) = \{\Gamma \mid \Gamma \in S^3_-\}$. The SOSC and bounded linear regular hold at $(\bar{x}, \overline{\Gamma})$, trivially.

Pick
$$\overline{\Gamma} = \text{Diag}(0, -1, -2)$$
. Then for all $\Gamma \in \mathbb{B}_{\min\{1/2, r_1\}}(\overline{\Gamma}) \setminus \mathcal{M}(\overline{x})$,
 $\Pi_{\mathcal{M}(\overline{x})}(\Gamma) = Q \text{Diag}(\min\{0, \Gamma_1\}, \Gamma_2, \Gamma_3) Q^T$,

where $Q \in \mathcal{O}^3(\Gamma)$. Let $\widehat{\Gamma} = Q \text{Diag}(0, \Gamma_2, \Gamma_3) Q^T$. By the bounded linear regular property, we have

$$\|\Pi_{\mathcal{M}(\bar{x})}(\Gamma) - \widehat{\Gamma}\| = \operatorname{dist}(\Gamma, \mathcal{M}(\bar{x})) = O(R(x, \Gamma)).$$

Examples (cont')

Example 2:

$$\begin{array}{ll} \min & \frac{1}{2}x^2 + 2t \\ \mathrm{s.t} & tA - x^2I_2 \in \mathcal{S}^2_+, \quad \Leftarrow \Gamma \\ & t \geq 0, \qquad \Leftarrow y \end{array}$$

where $A = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$. This problem possesses the unique optimal solution $(\bar{t}, \bar{x}) = (0, 0)$. The corresponding multiplier is
 $\mathcal{M}(\bar{t}, \bar{x}) = \{(\Gamma, y) \in \mathcal{S}^2_- \times \Re \mid \langle A, -\Gamma \rangle \leq 2\}.$
We can pick $\overline{\Gamma} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$. It is easy to see that
 $\begin{bmatrix} -1/2 & 0 \\ 0 & -1/2 \end{bmatrix} \in \mathcal{G}_1(\bar{t}, \bar{x}) \cap \mathrm{ri} \, \mathcal{G}_2(\bar{t}, \bar{x}) \text{ and the SOSC holds at } (\bar{t}, \bar{x}, \overline{\Gamma}).$

For all $\Gamma \in \mathbb{B}_{\min\{r_1, 1/(2\sqrt{10})\}}(\overline{\Gamma})$, we know that $\langle A, -\Gamma \rangle < 2$, which implies that $\Pi_{\mathcal{M}(\bar{t},\bar{x})}(\Gamma) = \Pi_{\mathcal{S}^2_{-}}(\Gamma)$. For $\Gamma = Q \operatorname{Diag}(\Gamma_1, \Gamma_2)Q^T$ with $Q \in \mathcal{O}^2(\Gamma)$, let $\widehat{\Gamma} = Q \operatorname{Diag}(0, \Gamma_2)Q^T$. $\|\Pi_{\mathcal{M}(\bar{x})}(\Gamma) - \widehat{\Gamma}\| = \operatorname{dist}(\Gamma, \mathcal{M}(\bar{x})) = O(R(x, \Gamma))$, which verifies Assumption.

Conclusions

In this talk:

- Convergence rate of ALM for NLSDP without the solution uniqueness assumption
- Uniformly second order expansion for Moreau envelop of SDP
- Sufficient conditions for semi-isolated calmness

Conclusions

In this talk:

- Convergence rate of ALM for NLSDP without the solution uniqueness assumption
- Uniformly second order expansion for Moreau envelop of SDP
- Sufficient conditions for semi-isolated calmness

Future work:

- Implementable stopping criterion
- dual Q-linear + primal R-linear

谢谢大家!