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Augmented Lagrangian method



Augmented Lagrangian function

Consider
min
x∈X

Φ(x)

s.t. h(x) = 0 ← y

Augmented Lagrangian function1:

Lσ(x; y) := Φ(x) + ⟨y, h(x)⟩+ σ

2
∥h(x)∥2

where σ > 0

1Arrow, K.J., Solow, R.M.: Gradient methods for constrained maxima with weakened
assumptions. In: Arrow, K.J., Hurwicz, L., Uzawa, H., (eds.) Studies in Linear and Nonlinear
Programming. Stanford University Press, Stanford, pp. 165-176 (1958)
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K. Arrow and R. Solow
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Augmented Lagrangian method2

ALM (Hestenes, 69’; Powell, 69’): xk+1 ≈ argmin
{
Lσ(x; y

k)
}

yk+1 = yk + σh(xk+1)

2a.k.a. the method of multipliers
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ALMs in practice

In particular, for SDP:

Source: Cui, Sun and Toh, MP 19’3

3Y. Cui, D.F. Sun, K.C. Toh, “On the R-superlinear convergence of the KKT residuals generated by the
augmented Lagrangian method for convex composite conic programming”, Mathematical Programming
178 (2019) 381–415
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ALMs in practice (cont’d)

Roughly speaking, xk → x∞ linearly with a rate bounded from above by

κp√
κ2
p + σ2

∞
< 1 (fast linear)

(CG :

√
κp − 1
√
κp + 1

≈ 1)

Powell, 69’4: ALM ⇐⇒ Approximate Newton method

min f(x)

s.t. ϕ(x) = 0
ALM :

{
x(y, σ) = argminx Lσ(x; y)

y ← y + ϕ(x(y, σ))

Newton method for Ψ(y) := ϕ(x(y, σ)) = 0 :

y ← y − JΨ(y)−1Ψ(y) = y − JΨ(y)−1ϕ(x(y, σ))

Powell, 69’ shows that the Jacobian of Ψ satisfies

∥−JΨ− I∥ = O(
1

σ − c )

4M.J.D. Powell. A method for nonlinear constraints in minimization problems. in Optimization, R.
Fletcher, ed., Academic Press, New York, 1969, pp. 283–298
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Convergence analysis for ALM



Local convergence rate of ALM (I)

Convex OPs:

• Rockafellar, 76’:

Dual upper Lipschitz continuity + dual boundedness + stopping criteria

=⇒ dual Q-linear

• Luque, 84’:

An error bound condition + stopping criteria =⇒ dual Q-linear

• Cui, Sun and Toh, MP 19’:

Dual calmness + stopping criteria

=⇒ dual Q-(asymptotically super-)linear

+KKT residual R-(asymptotically super-)linear

Key fact: the strong connection with dual PPA
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Local convergence rate of ALM (Il)

NLP (non-convex):

• cf. e.g., Bertsekas, 82’; Nocedal and Wright, 06’:

SOSC+ LICQ+ strict complementarity =⇒ primal R-linear+dual Q-linear

• Conn, Gould and Toint, 91’; Contesse-Becker 93’; Ito & Kunisch 91’:

SOSC + LICQ =⇒ primal R-linear + dual Q-linear

• Fernández and Solodov, SIOPT 12’:

SOSC + initial multiplier sufficiently close =⇒ primal-dual linear

Key fact: For NLP, automatically,

SOSC =⇒ a primal-dual error bound (Hoffman’s error bound)
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Local convergence rate of ALMs (III)

Non-polyhedral & non-convex:

• NLSDP (Sun, Sun and Zhang, MP 08’):

strong SOSC + LICQ + initial sufficiently close =⇒ primal-dual linear

• C2-cone reducible problems (Kanzow and Steck, MP 18’):

SOSC + SRCQ =⇒ primal-dual linear

Key fact: (D., Sun and Zhang, SIOPT 17’)

SOSC + SRCQ ⇐⇒ robust isolated calmness

For non-convex and non-polyhedral cases (MOPs),

• all results are obtained under the solution uniqueness assumption

• unlike the polyhedral case (NLPs), Hoffman’s error bound does not hold in
general

9



Local convergence rate of ALMs (III)

Non-polyhedral & non-convex:

• NLSDP (Sun, Sun and Zhang, MP 08’):

strong SOSC + LICQ + initial sufficiently close =⇒ primal-dual linear

• C2-cone reducible problems (Kanzow and Steck, MP 18’):

SOSC + SRCQ =⇒ primal-dual linear

Key fact: (D., Sun and Zhang, SIOPT 17’)

SOSC + SRCQ ⇐⇒ robust isolated calmness

For non-convex and non-polyhedral cases (MOPs),

• all results are obtained under the solution uniqueness assumption

• unlike the polyhedral case (NLPs), Hoffman’s error bound does not hold in
general

9



Local convergence rate of ALMs (III)

Non-polyhedral & non-convex:

• NLSDP (Sun, Sun and Zhang, MP 08’):

strong SOSC + LICQ + initial sufficiently close =⇒ primal-dual linear

• C2-cone reducible problems (Kanzow and Steck, MP 18’):

SOSC + SRCQ =⇒ primal-dual linear

Key fact: (D., Sun and Zhang, SIOPT 17’)

SOSC + SRCQ ⇐⇒ robust isolated calmness

For non-convex and non-polyhedral cases (MOPs),

• all results are obtained under the solution uniqueness assumption

• unlike the polyhedral case (NLPs), Hoffman’s error bound does not hold in
general

9



Local convergence rate of ALM (IV)

• Piecewise linear quadratic (Hang & Sarabi, SIOPT 21’ ):

SOSC + initial multiplier sufficiently close =⇒ primal-dual linear

• Second order cone (SOC) (Hang, Mordukhovich and Sarabi, J. Global
Opt. 21’):

SOSC + semi-isolated calm + initial sufficiently close

+ multiplier unique =⇒ primal-dual linear

• Fully amenable (Rockafellar, MP 21’): Piecewise linear quadratic & SOC

strong variational sufficiency =⇒ primal R-linear + dual Q-linear
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Main results



Local convergence analysis of ALM for NLSDP

NLSDP:
min f(x)

s.t. h(x) = 0, ← y

G(x) ∈ Sn
+, ← Γ

Let λ = (y,Γ), Φ(x) = (h(x), G(x)) and K = {0} × Sn
+.

Augmented Lagrangian function:

L(x, λ, ρ) := f(x) +
ρ

2
dist2(Φ(x) +

λ

ρ
,K)− ∥λ∥

2

2ρ

KKT:

SKKT (a1, a2, b) =

(x, y,Γ) ∈ X × ℜe × Sn :

∇xL(x, y,Γ)− a1 = 0,

h(x)− a2 = 0,

0 ⪯ (G(x)− b) ⊥ Γ ⪯ 0.


For a stationary point x̄, the set of multipliers satisfying KKT system:

M(x̄) = {(y,Γ) ∈ ℜe × Sn | (x̄, y,Γ) ∈ SKKT(0, 0, 0)}.
11



Inexact Augmented Lagrangian method

Algorithm 1
Input: Let (x0, λ0) ∈ X ×H, ρ0 > 0, ς > 1, ξ ∈ (0, 1), {ϵk}k≥0 with ϵk > 0

for all k and ϵk → 0 and set k := 0.
Output: x, λ

1: If (xk, λk) satisfies a suitable termination criterion: STOP.
2: Compute xk+1 ≈ argmin{L(x, λk, ρk)} such that ∥∇xL(·, λk, ρk)∥ ≤ ϵk.
3: Update the vector of multipliers to

λk+1 := ρk
[
Φ(xk+1) +

λk

ρk
−ΠK(Φ(x

k+1) +
λk

ρk
)
]
.

Update ρk+1 by ρk+1 = ρk or ρk+1 = ςρk according to certain rules.
4: Set k ← k + 1 and go to Step 1.

12



An assumption

Assumption

For all λ = (y,Γ) /∈M(x̄) sufficiently close to λ̄ ∈ rbdM(x̄) and x
sufficiently close to x̄, there also exists λ̂ ∈M(x̄) with π(Γ̂) = π(Γ) such that

∥ΠM(x̄)(λ)− λ̂∥ = O(R(x, λ)),

where R(x, λ) is the residual function defined by

R(x, λ) = ∥∇xL(x, λ)∥+ ∥Φ(x)−ΠK(Φ(x) + λ)∥.

13



An assumption (cont’d)
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Main result

Theorem

Let x̄ ∈ X be a stationary point to NLSDP and λ̄ ∈M(x̄). Suppose SOSC
holds at (x̄, λ̄) and semi-isolated calmness of SKKT holds at (0, (x̄, λ̄)).

(i) If λ̄ ∈ riM(x̄), then there exist positive constants r, ζ, ϱ such that for
any starting point (x0, λ0) ∈ Br(x̄, λ̄) the {(xk, λk)}k≥0 generated by
ALM with ρk ≥ ϱ and ϵk = o(R(xk, λk)) for all k satisfies

∥xk+1 − xk∥+ ∥λk+1 − λk∥ ≤ ζR(xk, λk).

(ii) If λ̄ ∈ rbdM(x̄) and Assumption holds, then there exist positive
constants r, ζ, ϱ such that for any starting point (x0, λ0) ∈ Br(x̄, λ̄) the
{(xk, λk)}k≥0 generated by ALM with ρk ≥ ϱ and ϵk = o(R(xk, λk)) and
λk /∈M(x̄) for all k also satisfies the above inequality.

Moreover, for each case, the sequence is convergent to (x̄, λ̂) for some
λ̂ ∈M(x̄) and its rate of convergence is linear, i.e., for k sufficiently large,

∥(xk+1, λk+1)− (x̄, λ̂)∥ ≤ τk∥(xk, λk)− (x̄, λ̂)∥,

where τk = 2
√
2ζκ1κ

2
2(R

−1
k ϵk + (ρk)−1ζ).

15



Spectral operators on matrices

Spectral operators: a class of matrix-valued functions defined on the spectral.
(D. PhD thesis; D., et. al, MP 18’ and SIOPT 20’)

For instance, the metric projection operator ΠSn
+
(·) : Sn → Sn over Sn

+:

ΠSn
+
(X) = P


(λ1(X))+ 0 0

...
. . .

...

0 0 (λn(X))+

PT , X ∈ Sn,

where λ1(X) ≥ . . . ≥ λn(X) are eigenvalues and P is the corresponding
eigenvector matrix, i.e.,

X = P


λ1(X) 0 0

...
. . .

...

0 0 λn(X)

PT .

Let π(X) := ∪d
i=1α

l(X) be the partition of eigenvalues λ(X) with
αl(X) := {i : λi(X) = vi(X)}, where v1(X) > · · · > vd(X) are different
eigenvalues of X.
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A refined perturbation analysis of eigenvalue decompositions

Given a fixed A ∈ Sn. Let 0 < r < mini<j{vi(A)− vj(A)}/3. For any
H ∈ Sn and A ∈ Br(A), let U be an orthogonal matrix such that

UT (Λ(A) +H
)
U = Λ

(
Λ(A) +H

)
.

Lemma

Then, for any H → 0, we have{
Uᾱkᾱl = O(∥H∥), k, l = 1, · · · , d̄, k ̸= l

UᾱkᾱkU
T
ᾱkᾱk

= I|ᾱk| +O(∥H∥2), k = 1, · · · , d̄

Furthermore, for each k ∈ {1, . . . , d̄}, there exists Qk ∈ O|ᾱk| such that

Uᾱkᾱk = Qk +O(∥H∥2)

and

QT
kHᾱkᾱkQk = Λᾱkᾱk (Λ(X) +H)−QT

k Λ(A)ᾱkᾱkQk +O(∥H∥2).

The O(∥H∥) and O(∥H∥2) above are uniform for all A ∈ Br(A).
17



A refined perturbation analysis of eigenvalue decompositions (cont’d)

Given A ∈ Sn and let 0 < r < mini<j{vi(A)− vj(A)}/3. For any H ∈ Sn

and A ∈ Br(A), let U be an orthogonal matrix such that

UT (A+H
)
U = Λ(A+H).

Lemma

For all l ∈ {1, . . . , d̄}, there exist Ql ∈ O|ᾱl| (depends on H) such that for all
H → 0,

(PTU)ᾱkᾱl = Θkl ◦ (H̃ᾱkᾱlQl) +O(∥H∥2), k ̸= l

where O(∥H∥2) is uniform for all A ∈ Br(A),
(Θkl)ij = 1/

(
(Λ(A)ᾱlᾱl)ii − (Λ(A)ᾱkᾱk )jj

)
and H̃ = PTHP , P ∈ On(A).

18



Uniformly B-differentiable of ΠSn
+
(·)

Proposition

Let A ∈ Sn be given. The metric projection operator ΠSn+(·) over Sn
+ is

uniformly B-differentiable of order 2 for any A ∈ Br(A) with π(A) = π(A),
i.e., for Sn ∋ H → 0,

ΠSn
+
(A+H)−ΠSn

+
(A)−Π′

Sn
+
(A;H) = O

(
∥H∥2

)
and O

(
∥H∥2

)
is uniform for all A ∈ Br(A) with π(A) = π(A).

⋆ In literature, we only know that ΠSn
+
(·) is B-differentiable of order 2 (D., et

al, MP 14’).

19



Uniformly second order expansion for Moreau envelop of SDP

Proposition

Let A ∈ Sn be given. For any A ∈ Br(A) with π(A) = π(A), we have for all
H → 0,

eδSn
+
(A+H)−eδSn

+
(A) = ⟨ΠSn

−
(A), H⟩+1

2
e
(
d2δSn

+
(G(x̄),Γ)

)
(H)+O(∥H∥3),

where O(∥H∥3) is uniform for all A ∈ Br(A) with π(A) = π(A) and
d2δSn

+
(G(x̄),Γ) .

• π(A) = π(A) means αl(A) = αl(A) for all k = 1, . . . , d

• (Poliquin & Rockafellar , SIOPT 96’) generated the non-uniform version
of o(∥H∥2)

20



Uniform quadratic growth condition for AL function

Theorem

Let x̄ ∈ X be a locally optimal solution to the NLSDP and λ̄ ∈M(x̄).

(i) If λ̄ ∈ riM(x̄), then the SOSC holds at (x̄, λ̄) if and only if there are
positive constants ρ3, γ, ε, l such that for all λ ∈M(x̄) ∩ Bε(λ̄) and all
ρ ≥ ρ3 the uniform quadratic growth condition

L(x, λ, ρ) ≥ f(x̄) + l∥x− x̄∥2 for all x ∈ Bγ(x̄) (1)

is satisfied.

(ii) If λ̄ ∈ rbdM(x̄), then the SOSC holds at (x̄, λ̄) if and only if there are
positive constants ρ3, γ, ε, l such that (1) holds uniformly for all ρ ≥ ρ3
and all λ ∈M(x̄) ∩ Bε(λ̄) with π(Γ) = π(Γ).

• While in polyhedral case, uniform quadratic growth condition can be get
directly from SOSC
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Comparison: Rockafellar’s variational sufficiency

Consider a general parametrical optimization

minφ(x, u) s.t. u = 0,

where u is a perturbation parameter. Let φρ(x, u) = φ(x, u) + ρ
2
|u|2.

Definition (Rockafellar, MP 21’ 5)
The (strongly) variational sufficiency for local optimality holds with respect
to (x̄, ȳ) ∈ gph ∂φρ satisfying the first-order condition if there exists ρ > 0

such that is variationally (strongly) convex with respect to ((x̄, 0), (0, ȳ)) in
gph ∂φρ, i.e., there exist open convex neighborhoods W of (x̄, 0) and Z of
(0, ȳ) such that
there exists a proper lsc (strongly) convex function ψ ≤ φρ on W such that

[W ×Z) ∩ gph ∂ψ = [W ×Z) ∩ gph ∂φρ

and, for (x, u; v, y) belonging to this common set, ψ(x, u) = φρ(x, u).

5R.T. Rockafellar. Augmented Lagrangians and hidden convexity in sufficient conditions for local
optimality. in Math. Programming, to appear.
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Comparison: Rockafellar’s variational sufficiency (cont’d)

Theorem (Rockafellar, MP 21’)
With respect to x̄ and ȳ satisfying the first-order optimality condition, the
variational sufficiency for local optimality holds if and only if, for ρ > 0

sufficiently large, there is a closed convex neighborhood X × Y of (x̄, ȳ) such
that L(x, y, ρ) is convex in x ∈ X when y ∈ Y as well as concave y ∈ Y
when x ∈ X .

Theorem (Rockafellar, MP 21’)
The strongly variational sufficiency for local optimality implies augmented
tilt stability. It corresponds equally to having the functions L(·, y, ρ) on X for
y ∈ Y be strongly convex, all with the same modulus of strong convexity.

Both may fail easily even under SOSC!
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The proof is in the pudding

Proposition

Let (x̄, λ̄) be a KKT point satisfying SOSC. Define

Sρ(λ) = argmin{L(x, λ, ρ) | x ∈ Br̂(x̄)}.

Then there are positive constants τ, ρ3, r̂ > 0 such that for every ρ ≥ ρ3 and
λ ∈ Br̂/2τ (λ̄), the set Sρ(λ) satisfies the uniform isolated calmness property,
i.e.,

Sρ(λ) ⊆ {x̄}+ τ∥λ− λ̄∥B

and satisfies ∅ ̸= Sρ(λ) ⊆ intBr̂(x̄).

• (Sun at al., MP 08’): nondegeneracy+ strong SOSC =⇒ Lipschitz
continuity

• (Rockafellar, MP 21’):
strongly variational sufficiency =⇒ augmented tilt stability
⋆ stronger than SOSC
⋆ fully amenable function
works for NLP, NLSOC; but NLSDP is another kettle of fish
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Proof sketch

A refined perturbation analysis of
eigenvalue decompositions

⇓

SOSC +
Uniform second Expansion
of Moreau envelop

=⇒
Uniform quadratic
growth condition

⇓ +

Uniform isolated
calmness of AL
subproblems +

Semi-isolated
calmness + Assumption

⇓

Local linear convergence of ALM
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Semi-isolated calmness

Definition

The semi-isolated clamness for the mapping SKKT at ((0, 0, 0), (x̄, ȳ,Γ))

holds if there exists κ > 0 and open neighborhoods V of (0, 0, 0) and U of
(x̄, ȳ,Γ) such that for all (x, y,Γ) ∈ SKKT(a1, a2, b) ∩ U,

∥x− x̄∥+ dist((y,Γ),M(x̄)) ≤ κ1∥(a1, a2, b)∥
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Sufficient conditions for semi-isolated calmness

Theorem

Let x̄ ∈ X be a locally optimal solution to the NLSDP and (ȳ,Γ) ∈M(x̄).
Suppose SOSC holds at (x̄, ȳ,Γ) and

G1(x̄) ∩ riG2(x̄) ̸= ∅,

where G1(x̄) = {(y,Γ) ∈ Y × Sn | ∇f(x̄) +∇h(x̄)∗y +∇G(x̄)∗Γ = 0} and
G2(x̄) = {(y,Γ) ∈ Y × Sn | Γ ∈ NSn

+
(G(x̄))}. Then there exist a constant

κ1 > 0 and a neighborhood U := Br1(x̄, ȳ,Γ) of (x̄, ȳ,Γ) such that for any
(a1, a2, b) ∈ X × Y × Sn,

∥x−x̄∥+dist((y,Γ),M(x̄)) ≤ κ1∥(a1, a2, b)∥ ∀ (x, y,Γ) ∈ SKKT(a1, a2, b)∩U.

Other sufficient conditions:

• SOSC + SRCQ, reduced to isolated calmness

• SSOSC + nondegeneracy, reduced to strong regularity
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Examples

Assumption: For all λ = (y,Γ) /∈M(x̄) sufficiently close to λ̄ ∈ rbdM(x̄) and
x sufficiently close to x̄, there also exists λ̂ ∈M(x̄) with π(Γ̂) = π(Γ) such
that

∥ΠM(x̄)(λ)− λ̂∥ = O(R(x, λ)).

Example 1:
min 1

2
x3

s.t −x2

 0 0 0

0 0 0

0 0 1

 ∈ S3
+ ⇐ Γ

The optimal solution is x̄ = 0 and M(x̄) = {Γ | Γ ∈ S3
−}. The SOSC and

bounded linear regular hold at (x̄,Γ), trivially.

Pick Γ = Diag(0,−1,−2). Then for all Γ ∈ Bmin{1/2,r1}(Γ)\M(x̄),

ΠM(x̄)(Γ) = QDiag(min{0,Γ1},Γ2,Γ3)Q
T ,

where Q ∈ O3(Γ). Let Γ̂ = QDiag(0,Γ2,Γ3)Q
T . By the bounded linear

regular property, we have

∥ΠM(x̄)(Γ)− Γ̂∥ = dist(Γ,M(x̄)) = O(R(x,Γ)).
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Examples (cont’)

Example 2:
min 1

2
x2 + 2t

s.t tA− x2I2 ∈ S2
+, ⇐ Γ

t ≥ 0, ⇐ y

where A =

[
1 −2
−2 1

]
. This problem possesses the unique optimal solution

(t̄, x̄) = (0, 0). The corresponding multiplier is

M(t̄, x̄) = {(Γ, y) ∈ S2
− ×ℜ | ⟨A,−Γ⟩ ≤ 2}.

We can pick Γ =

[
0 0

0 −1

]
. It is easy to see that[

−1/2 0

0 −1/2

]
∈ G1(t̄, x̄) ∩ riG2(t̄, x̄) and the SOSC holds at (t̄, x̄,Γ).

For all Γ ∈ Bmin{r1,1/(2
√

10)}(Γ), we know that ⟨A,−Γ⟩ < 2, which implies
that ΠM(t̄,x̄)(Γ) = ΠS2

−
(Γ). For Γ = QDiag(Γ1,Γ2)Q

T with Q ∈ O2(Γ), let

Γ̂ = QDiag(0,Γ2)Q
T . ∥ΠM(x̄)(Γ)− Γ̂∥ = dist(Γ,M(x̄)) = O(R(x,Γ)), which

verifies Assumption.
29



Conclusions

In this talk:

• Convergence rate of ALM for NLSDP without the solution uniqueness
assumption

• Uniformly second order expansion for Moreau envelop of SDP

• Sufficient conditions for semi-isolated calmness

Future work:

• Implementable stopping criterion

• dual Q-linear + primal R-linear
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谢谢大家!
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