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Augmented Lagrangian function

Consider

wy o)

st. h(z)=0 <« y

Augmented Lagrangian function®:
a
Lo (z3y) == @(x) + (y, h(z)) + g\lh(w)\l2

where o > 0

1 Arrow, K.J., Solow, R.M.: Gradient methods for constrained maxima with weakened
assumptions. In: Arrow, K.J., Hurwicz, L., Uzawa, H., (eds.) Studies in Linear and Nonlinear
Programming. Stanford University Press, Stanford, pp. 165-176 (1958)
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Augmented Lagrangian method?

ALM (Hestenes, 69’; Powell, 69’):

{ 2" &~ argmin {L”(m; yk)}

yk’+1 _ yk +0’h(f[)k+1)

Magnus Rudolph Hestenes Michael James David Powell
(February 13 1906 — May 31 1991) (29 July 1936 — 19 April 2015)

2a.k.a. the method of multipliers



ALMs in practice

In particular, for SDP:
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Source: Cui, Sun and Toh, MP 19’3

3v. Cui, D.F. Sun, K.C. Toh, “On the R-superlinear convergence of the KKT residuals generated by the

augmented Lagrangian method for convex composite conic programming’’, Mathematical Programming

178 (2019) 381-415
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Roughly speaking, 2* — 2™ linearly with a rate bounded from above by
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ALMs in practice (cont’d)

Roughly speaking, 2* — 2™ linearly with a rate bounded from above by

N
(CG: \/@Jrl ~ 1)

Kp

VEE+ 02

<1 (fast linear)

Powell, 69'*: ALM <= Approximate Newton method

min  f(x) ALM - { z(y,0) = argmin, Lo (z;y)
st. ¢(z)=0 Y y+o(z(y,0))

“M.J.D. Powell. A method for nonlinear constraints in minimization problems. in Optimization, R.
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ALMs in practice (cont’d)

Roughly speaking, 2* — 2™ linearly with a rate bounded from above by

Kp

————— <1 (fastlinear) (CG:Y*—— =1)
VEE+ 02 1//ierl
Powell, 69'*: ALM <= Approximate Newton method
min T z(y,0) = argmin, Lo (x;
f(z) ALM - { (y,0) = arg (z;9)
st. ¢(x)=0 y < y+o(z(y,0))

Newton method for ¥ (y) := ¢(z(y,0)) =0

yy—JU(y) Wy =y — JU(y)  p(a(y,0))

M.J.D. Powell. A method for nonlinear constraints in minimization problems. in Optimization, R
Fletcher, ed., Academic Press, New York, 1969, pp. 283-298



ALMs in practice (cont’d)

Roughly speaking, 2* — 2™ linearly with a rate bounded from above by

Kp

————— <1 (fastlinear) (CG:Y*—— =1)
VEE+ 02 1//ierl
Powell, 69'*: ALM <= Approximate Newton method
min T z(y,0) = argmin, Lo (x;
f(z) ALM - { (y,0) = arg (z;9)
st. ¢(x)=0 y < y+o(z(y,0))

Newton method for ¥ (y) := ¢(z(y,0)) =0
yy—JU(y) Wy =y — JU(y) " p(z(y, o))

Powell, 69’ shows that the Jacobian of U satisfies

1
|-J% - 1| = 0(-—)

M.J.D. Powell. A method for nonlinear constraints in minimization problems. in Optimization, R
Fletcher, ed., Academic Press, New York, 1969, pp. 283-298
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Local convergence rate of ALM (1)

Convex OPs:
e Rockafellar, 76’:
Dual upper Lipschitz continuity + dual boundedness + stopping criteria

—> dual Q-linear
e Luque, 84":

An error bound condition + stopping criteria = dual Q-linear

e Cui, Sun and Toh, MP 19":
Dual calmness + stopping criteria
—  dual Q-(asymptotically super-)linear

+ KKT residual R-(asymptotically super-)linear

Key fact: the strong connection with dual PPA
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Local convergence rate of ALM (lI)

NLP (non-convex):

e cf. e.g., Bertsekas, 82'; Nocedal and Wright, 06':

SOSC + LICQ + strict complementarity =—> primal R-linear+dual Q-linear

e Conn, Gould and Toint, 91"; Contesse-Becker 93'; lto & Kunisch 91':

SOSC + LICQ = primal R-linear + dual Q-linear

e Fernandez and Solodov, SIOPT 12":
SOSC + initial multiplier sufficiently close = primal-dual linear
Key fact: For NLP, automatically,

SOSC = a primal-dual error bound (Hoffman's error bound)
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Local convergence rate of ALMs (I11)

Non-polyhedral & non-convex:

e NLSDP (Sun, Sun and Zhang, MP 08’):

strong SOSC + LICQ + initial sufficiently close = primal-dual linear

e (’-cone reducible problems (Kanzow and Steck, MP 18"):
SOSC+SRCQ = primal-dual linear
Key fact: (D., Sun and Zhang, SIOPT 17')

SOSC + SRCQ <= robust isolated calmness

For non-convex and non-polyhedral cases (MOPs),
e all results are obtained under the solution uniqueness assumption

e unlike the polyhedral case (NLPs), Hoffman's error bound does not hold in
general



Local convergence rate of ALM (1V)

e Piecewise linear quadratic (Hang & Sarabi, SIOPT 21’ ):

SOSC + initial multiplier sufficiently close = primal-dual linear
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Local convergence rate of ALM (1V)

e Piecewise linear quadratic (Hang & Sarabi, SIOPT 21’ ):

SOSC + initial multiplier sufficiently close = primal-dual linear

e Second order cone (SOC) (Hang, Mordukhovich and Sarabi, J. Global
Opt. 21'):

SOSC + semi-isolated calm + initial sufficiently close

+ multiplier unique = primal-dual linear
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Local convergence rate of ALM (1V)

e Piecewise linear quadratic (Hang & Sarabi, SIOPT 21’ ):

SOSC + initial multiplier sufficiently close = primal-dual linear

e Second order cone (SOC) (Hang, Mordukhovich and Sarabi, J. Global
Opt. 21'):

SOSC + semi-isolated calm + initial sufficiently close

+ multiplier unique = primal-dual linear

e Fully amenable (Rockafellar, MP 21'): Piecewise linear quadratic & SOC

strong variational sufficiency = primal R-linear + dual Q-linear

10
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Local convergence analysis of ALM for NLSDP

NLSDP:
min  f(x)
st. h(z)=0, <« vy
Gx)eSy, «+ T

Let A = (y,T), ®(z) = (h(z), G(x)) and K = {0} x S™.

Augmented Lagrangian function:

LA p) = f(x) + Ldist®(@ ()+ K) - Hgﬂ

KKT:
Vel(z,y, ') —a1 =0,
Skrr(ar,a2,b) =4 (z,y,I') € X x R xS": h(x) —a2 =0,
0= (G(z)—b) LT <0.

For a stationary point Z, the set of multipliers satisfying KKT system:

M(z) ={(y,T) e R® x S" | (z,y,T") € Skrr(0,0,0)}.
11



Inexact Augmented Lagrangian method

Algorithm 1
Input: Let (z°,)\°) € X x H, po >0, s > 1, £ € (0,1), {ex}r>0 with ex > 0
for all k£ and € — 0 and set & := 0.
Output: =, A
1: If (2F, A\*) satisfies a suitable termination criterion: STOP.
2. Compute z"! & argmin{L(z, \¥, p*)} such that ||[V.L(-, \*, p*)|| < ex.
3: Update the vector of multipliers to

AL R T (R A
=" [ @) + S

P I (@ (") +

=1

k+1

Update p by p"T = pF or pFT! = ¢p* according to certain rules.

4. Set k <+ k+ 1 and go to Step 1.

12



Assumption

For all A = (y,T) ¢ M(Z) sufficiently close to X € rbd M(z) and z
sufficiently close to Z, there also exists A € M(z) with 7r(1A“) = 7(T) such that

ITaa)(X) = Al = O(R(z, A)),
where R(x, \) is the residual function defined by

R(z,A) = Vo L(z, M| + [|2(2) — Tk (®(2) + M.

13



An assumption (cont’d)

14



Main result

Theorem

Let Z € X be a stationary point to NLSDP and X\ € M(z). Suppose SOSC
holds at (Z, \) and semi-isolated calmness of Sk holds at (0, (Z,\)).

(i) If X € 1i M(Z), then there exist positive constants T, C, 0 such that for
any starting point (z°,\°) € B=(Z, \) the {(z", \¥)}1>0 generated by
ALM with p* >3 and ex = o(R(z", \*)) for all k satisfies

1z — 2]+ A = N < CR(®, AY).

(i) If X\ € tbd M(Z) and Assumption holds, then there exist positive
constants T, ¢, 0 such that for any starting point (z°, \°) € B~(Z, \) the
{(z®, \*)}u>0 generated by ALM with p* > and ex, = o( R(z", \¥)) and
e & M(Z) for all k also satisfies the above inequality.

Moreover, for each case, the sequence is convergent to (Z, X) for some
X € M(Z) and its rate of convergence is linear, i.e., for k sufficiently large,

I X — @, NI < 70 A0 = @

where 7% = 2v/2Ck113(Ry e + (p*)710). 15



Spectral operators on matrices

Spectral operators: a class of matrix-valued functions defined on the spectral.
(D. PhD thesis; D., et. al, MP 18" and SIOPT 20')

For instance, the metric projection operator ILs» (-) : 8" — S™ over S:
(X)) 00
sy (X) = P : . : P, Xxes",
0 0 (A(X))s

where A\1(X) > ... > A\, (X) are eigenvalues and P is the corresponding
eigenvector matrix, i.e.,

X=pr o pPT.

16



Spectral operators on matrices

Spectral operators: a class of matrix-valued functions defined on the spectral.
(D. PhD thesis; D., et. al, MP 18" and SIOPT 20')

For instance, the metric projection operator Hgi(-) : 8" — 8" over SY:
(X)) 00
sy (X) = P : : P, Xxes",
0 0 (A(X))s

where A\1(X) > ... > A\, (X) are eigenvalues and P is the corresponding

eigenvector matrix, i.e.,

Let 7(X) := U, a’(X) be the partition of eigenvalues A\(X) with
A (X) = {i: Mi(X) = vi(X)}, where v1(X) > --- > vg(X) are different

eigenvalues of X.
16



A refined perturbation analysis of eigenvalue decompositions

Given a fixed A € 8". Let 0 < 7 < min;<;{v:(A) — v;(A)}/3. For any
H € 8™ and A € B,.(A), let U be an orthogonal matrix such that

UT(A(A) + H)U = A(A(A) + H).
Lemma

Then, for any H — 0, we have
{UMW—OUHU k=1, dk#l
Uspar,Us ap = Loy + O(IH|?), k=1,---,d
Furthermore, for each k € {1,...,d}, there exists Qi € O'*¢! such that
Usia, = Q + O(IH|)
and
Qi Haya Q= Az (MX) + H) = Qi AMA)ara,, Qk + O(IH)-

The O(||H||) and O(||H||?) above are uniform for all A € B,.(A).

17



A refined perturbation analysis of eigenvalue decompositions (cont’d)

Given A € 8™ and let 0 < r < min;<;{v;(A) —v;(A)}/3. Forany H € 8"

and A € B,.(A), let U be an orthogonal matrix such that

U"(A+ H)U = A(A + H).

Lemma

Foralll € {1,...,d}, there exist Q; € ol (depends on H ) such that for all
H —0,

(PTU)@k@z =Op 0 (ﬁ&k&LQl) + O(HH“2)7 k#1

where O(||H||?) is uniform for all A € B,.(A),
(Or1)ij = 1/ (M A)a,a)ii — (A(A)aya,)js) and H = PTHP, P € O"(A).

18



Uniformly B-differentiable of Ils» (-)

Proposition

Let A € 8™ be given. The metric projection operator Hsn (-) over ST is
uniformly B-differentiable of order 2 for any A € B,.(A) with (A) = n(A),
ie., forS" > H — 0,

sy (A + H) — sy (A) — s (A4 H) = O (||H|*)

and O (||H||?) is uniform for all A € B,.(A) with m(A) = m(A).

* In literature, we only know that Ils» () is B-differentiable of order 2 (D., et
al, MP 14").

19



Uniformly second order expansion for Moreau envelop of SDP

Proposition

Let A € S™ be given. For any A € B,.(A) with m(A) = 7(A), we have for all
H — 0,

edsn (A+H)—edsn (A) = (Ilsn (4), H>+%€(d2581 (G(2),1)(H)+O(|H]*),

where O(||H||*) is uniform for all A € B,.(A) with 7(A) = 7(A) and
dQ(Ssi (G(f), F) .

o m(A) = 7(A) means a;(A) = ay(A) forall k=1,...,d

e (Poliquin & Rockafellar , SIOPT 96’) generated the non-uniform version
of of||H|*)

20



Uniform quadratic growth condition for AL function

Theorem

Let T € X be a locally optimal solution to the NLSDP and \ € M(Z).

(i) If X\ € 1i M(Z), then the SOSC holds at (%, \) if and only if there are
positive constants ps, v, €, | such that for all \ € M(z) NB.()\) and all

p > ps the uniform quadratic growth condition
Lz, p) > f(&@) + 1|z —zZ||* forall z € B (Z) (1)
is satisfied.

(i) If X € tbd M(Z), then the SOSC holds at (%, \) if and only if there are

positive constants ps, v, €, | such that (1) holds uniformly for all p > ps
and all X € M(z) NB.(X\) with 7n(T") = =(T).

21



Uniform quadratic growth condition for AL function

Theorem

Let T € X be a locally optimal solution to the NLSDP and \ € M(Z).
(i) If X\ € 1i M(Z), then the SOSC holds at (%, \) if and only if there are

positive constants ps, v, €, | such that for all A € M(z) NB.(\) and all
p > ps the uniform quadratic growth condition

Lz, p) > f(&@) + 1|z —zZ||* forall z € B (Z) (1)
is satisfied.

(i) If X € tbd M(Z), then the SOSC holds at (%, \) if and only if there are
positive constants ps, v, €, | such that (1) holds uniformly for all p > ps

and all A € M(z) NB.(\) with 7(T) = m(T).

e While in polyhedral case, uniform quadratic growth condition can be get

directly from SOSC

21



Comparison: Rockafellar’s variational sufficiency

Consider a general parametrical optimization
ming(z,u) s.t.u =0,

where u is a perturbation parameter. Let ¢, (z,u) = ¢(z,u) + £|ul’.

22



Comparison: Rockafellar’s variational sufficiency

Consider a general parametrical optimization
ming(z,u) s.t.u =0,
where u is a perturbation parameter. Let ¢, (z,u) = ¢(z,u) + £|ul’.

Definition (Rockafellar, MP 21’ °)
The (strongly) variational sufficiency for local optimality holds with respect
to (Z,y) € gph dp, satisfying the first-order condition if there exists p > 0
such that is variationally (strongly) convex with respect to ((Z,0), (0,%)) in
gph Op,, i.e., there exist open convex neighborhoods W of (Z,0) and Z of
(0,7) such that

there exists a proper Isc (strongly) convex function ¢ < ¢, on W such that

W x Z)Ngphdy = [W x Z) N gphdy,

and, for (z,u;v,y) belonging to this common set, ¥ (z,u) = ¢, (z,u).

5R.T. Rockafellar. Augmented Lagrangians and hidden convexity in sufficient conditions for local
optimality. in Math. Programming, to appear.

22



Comparison: Rockafellar’s variational sufficiency (cont’d)

Theorem (Rockafellar, MP 21’)

With respect to T and i satisfying the first-order optimality condition, the
variational sufficiency for local optimality holds if and only if, for p > 0
sufficiently large, there is a closed convex neighborhood X x Y of (Z,y) such

that L(z,y, p) is convex in x € X wheny € ) as well as concave y € Y
when x € X.

23



Comparison: Rockafellar’s variational sufficiency (cont’d)

Theorem (Rockafellar, MP 21’)

With respect to T and i satisfying the first-order optimality condition, the
variational sufficiency for local optimality holds if and only if, for p > 0
sufficiently large, there is a closed convex neighborhood X x Y of (Z,y) such
that L(z,y, p) is convex in x € X wheny € ) as well as concave y € Y
when x € X.

Theorem (Rockafellar, MP 21’)

The strongly variational sufficiency for local optimality implies augmented
tilt stability. /t corresponds equally to having the functions L(-,y, p) on X for
y € Y be strongly convex, all with the same modulus of strong convexity.

Both may fail easily even under SOSC!

23



The proof is in the pudding

Proposition
Let (z,\) be a KKT point satisfying SOSC. Define
Sp(A) = argmin{L(z, \, p) | € Bx(Z)}.

Then there are positive constants T, ps,7 > 0 such that for every p > ps and
X € Bz/a-(N), the set S,()\) satisfies the uniform isolated calmness property,

ie.,

Sp(A) € {z} +7[X - AlIB
and satisfies @ # S,(\) C int B#(Z).

24



The proof is in the pudding

Proposition
Let (z,\) be a KKT point satisfying SOSC. Define
Sp(A) = argmin{L(z, \, p) | € Bx(Z)}.

Then there are positive constants T, ps,7 > 0 such that for every p > ps and
A€ IEB;/QT(/_\), the set S,(\) satisfies the uniform isolated calmness property,
ie.,

5,(\) € {z} + 7lA — A|B

and satisfies @ # S,(\) C int B#(Z).

e (Sun at al.,, MP 08'): nondegeneracy + strong SOSC = Lipschitz

continuity

e (Rockafellar, MP 21'):
strongly variational sufficiency = augmented tilt stability
* stronger than SOSC

* fully amenable function

works for NLP, NLSOC; but NLSDP is another kettle of fish
24



Proof sketch

A refined perturbation analysis of
eigenvalue decompositions

Y

Uniform second Expansion

SOSC| + |of Moreau envelop
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A refined perturbation analysis of
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Uniform second Expansion Uniform quadratic
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Proof sketch

A refined perturbation analysis of
eigenvalue decompositions

3
Uniform second Expansion Uniform quadratic
SOSC| + |of Moreau envelop — | growth condition
(3 +
Uniform isolated
calmness of AL Semi-isolated
subproblems + | calmness +

I

Local linear convergence of ALM ‘

25



Semi-isolated calmness

Definition

The semi-isolated clamness for the mapping Skkr at ((0,0,0), (Z,9,T))
holds if there exists k > 0 and open neighborhoods V of (0,0,0) and U of

(Z,%,T) such that for all (z,y,T) € Skxr(a1,az,b) NT,

e — & + dist((y, I), M(@)) < ral(ar, az, b)|

26



Sufficient conditions for semi-isolated calmness

Theorem

Let T € X be a locally optimal solution to the NLSDP and (3,T) € M(Z).
Suppose SOSC holds at (z,y,T) and

G1(Z) NriG2(Z) # 2,

where G1(Z) = {(y,I') € ¥ x 8" | Vf(Z) + Vh(Z)"y + VG(Z)*T = 0} and

G2(z) ={(y,T') € ¥ x 8" | I" € N5z (G(Z))}. Then there exist a constant
k1 > 0 and a neighborhood U := ]B%T1 (z,5,T) of (Z,7,T) such that for any
(a1,a2,b) € X x Y x 8™,

[z—2Z|+dist((y, '), M(Z)) < k1ll(ar,a2,b)|| V(z,y,T) € Skxr(ai,az,b)NU.

27



Sufficient conditions for semi-isolated calmness

Theorem

Let T € X be a locally optimal solution to the NLSDP and (3,T) € M(Z).
Suppose SOSC holds at (z,y,T) and

G1(Z) NriG2(Z) # 2,

where G1(Z) = {(y,I') € ¥ x 8" | Vf(Z) + Vh(Z)"y + VG(Z)*T = 0} and

G2(z) ={(y,T') € ¥ x 8" | I" € N5z (G(Z))}. Then there exist a constant
k1 > 0 and a neighborhood U := ]B%T1 (z,5,T) of (Z,7,T) such that for any
(a1,a2,b) € X x Y x 8™,

[z—2Z|+dist((y, '), M(Z)) < k1ll(ar,a2,b)|| V(z,y,T) € Skxr(ai,az,b)NU.

Other sufficient conditions:
e SOSC + SRCQ, reduced to isolated calmness

e SSOSC + nondegeneracy, reduced to strong regularity

27



Assumption: For all A = (y,T') ¢ M(Z) sufficiently close to A € rbd M(Z) and
x sufficiently close to Z, there also exists A € M(Z) with 7(I") = 7(T') such

that
Mt () = All = O(R(x, A)-
Example 1:
min %az‘g
0 0 O
st —2*| 0 0 0|eSt <«T
0 0 1
The optimal solution is 7 = 0 and M(z) = {T' | T' € S*}. The SOSC and

bounded linear regular hold at (z,T'), trivially.
Pick I' = Diag(0, —1, —2). Then for all T" € Buin{1/2,,1 (D) \M(Z),

vz (I) = @Diag(min{0,T1},T2,T3)Q",

where Q € O*(T"). Let r'= QDiag(0,T2,T'3)Q". By the bounded linear
regular property, we have

I pas) (1) — B = dist (T, M(2)) = O(R(x,T)). }



Examples (cont’)

Example 2:
min %zQ + 2t
st tA—2%I GSi, <T
t >0, <=y
1 —2 . . . .
where A = 5 1 | This problem possesses the unique optimal solution

(t,z) = (0,0). The corresponding multiplier is
M(t,z) ={(T,y) € S xR | (A, -T) < 2}.

0

We can pick I’ = { 0

0 .
Ll It is easy to see that

{ 72/2 ?/2 } € Gi(£,Z) NriGa(f, Z) and the SOSC holds at (£,z,T).
Forall T e Bmirl{r1’1/<2m)}(f), we know that (A, —T") < 2, which implies
that I(z,z) (') = g2 (I'). For T' = QDiag(I'1,T'2)Q" with Q@ € O*(T), let
T = QDiag(0,T2)QT. [Ty (T) — T'|| = dist(T', M(z)) = O(R(z,T)), which

verifies Assumption.
29



Conclusions

In this talk:

e Convergence rate of ALM for NLSDP without the solution uniqueness
assumption

e Uniformly second order expansion for Moreau envelop of SDP

e Sufficient conditions for semi-isolated calmness
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In this talk:

e Convergence rate of ALM for NLSDP without the solution uniqueness
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e Uniformly second order expansion for Moreau envelop of SDP

e Sufficient conditions for semi-isolated calmness
Future work:

e Implementable stopping criterion

e dual Q-linear + primal R-linear
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